Pulmonary Nodule Classification Using Feature and Ensemble Learning-Based Fusion Techniques

被引:17
作者
Muzammil, Muhammad [1 ]
Ali, Imdad [1 ,2 ]
Haq, Ihsan Ul [1 ]
Khaliq, Amir A. [1 ]
Abdullah, Suheel [1 ]
机构
[1] Int Islamic Univ, Fac Engn & Technol, Islamabad 44000, Pakistan
[2] Natl Ctr Phys, Islamabad 44000, Pakistan
关键词
Lung; Feature extraction; Lung cancer; Tumors; Support vector machines; Computed tomography; Cancer; Deep convolutional neural network; computer aided diagnosis; computed tomography; pulmonary nodule; deep features; deep feature fusion; ensemble learner; support vector machine; nodule classification; LUNA16; challenge; AUTOMATED CLASSIFICATION; DECISION LEVEL; LUNG NODULES; TEXTURE; IMAGES; CNNS;
D O I
10.1109/ACCESS.2021.3102707
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Pulmonary nodule indicates the presence of lung cancer. The deep convolutional neural networks (DCNNs) have been widely used to classify the pulmonary nodule as benign or malignant. However, an individual learner usually performs unsatisfactorily due to limited response space, incorrect selection of hypothesis space, or falling into local minimums. To investigate these issues, we propose ensemble learners fusion techniques based on averaging of prediction score and maximum vote score (MAX-VOTE). First, the support vector machine (SVM) and AdaBoostM2 machine learning algorithms are trained on the deep features from DCNNs. The results of both classifiers are fused separately based on averaging of the prediction score. Secondly, the feature fusion technique is developed by fusing the feature of three DCNNs (AlexNet, VGG-16 and VGG-19) through predefined rules. After that, the SVM and AdaBoostM2 are trained on fused features independently to build ensemble learners by fusing the multiple DCNN learners. The predictions of all DCNN learners are fused based on the MAX-VOTE. The results show that the ensemble learners based MAX-VOTE technique yields better performance out of twelve single learners for binary class classification of pulmonary nodules. The proposed fusion techniques are also tested for multi-class classification problem. The SVM based feature fusion technique performs better as compared to all the implemented and the state-of-the-art techniques. The achieved maximum accuracy, AUC and specificity scores are 96.89%+/- 0.25, 99.21%+/- 0.10 and 97.70%+/- 0.21, respectively.
引用
收藏
页码:113415 / 113427
页数:13
相关论文
共 72 条
[1]   Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening [J].
Aberle, Denise R. ;
Adams, Amanda M. ;
Berg, Christine D. ;
Black, William C. ;
Clapp, Jonathan D. ;
Fagerstrom, Richard M. ;
Gareen, Ilana F. ;
Gatsonis, Constantine ;
Marcus, Pamela M. ;
Sicks, JoRean D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) :395-409
[2]  
Ahmed H. A., 2019, J ZANKOY SULAIMANI, V21, P107
[3]   Deep Feature Selection and Decision Level Fusion for Lungs Nodule Classification [J].
Ali, Imdad ;
Muzammil, Muhammad ;
Ul Haq, Ihsan ;
Khaliq, Amir A. ;
Abdullah, Suheel .
IEEE ACCESS, 2021, 9 :18962-18973
[4]   Efficient Lung Nodule Classification Using Transferable Texture Convolutional Neural Network [J].
Ali, Imdad ;
Muzammil, Muhammad ;
Ul Haq, Ihsan ;
Khaliq, Amir A. ;
Abdullah, Suheel .
IEEE ACCESS, 2020, 8 :175859-175870
[5]   POINTS OF SIGNIFICANCE Ensemble methods: bagging and random forests [J].
Altman, Naomi ;
Krzywinski, Martin .
NATURE METHODS, 2017, 14 (10) :933-934
[6]  
[Anonymous], 2018, Cancer
[7]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[8]   Transfer learning based robust automatic detection system for diabetic retinopathy grading [J].
Bhardwaj, Charu ;
Jain, Shruti ;
Sood, Meenakshi .
NEURAL COMPUTING & APPLICATIONS, 2021, 33 (20) :13999-14019
[9]   Radiomic features analysis in computed tomography images of lung nodule classification [J].
Chen, Chia-Hung ;
Chang, Chih-Kun ;
Tu, Chih-Yen ;
Liao, Wei-Chih ;
Wu, Bing-Ru ;
Chou, Kuei-Ting ;
Chiou, Yu-Rou ;
Yang, Shih-Neng ;
Zhang, Geoffrey ;
Huang, Tzung-Chi .
PLOS ONE, 2018, 13 (02)
[10]  
Cheng JZ, 2016, SCI REP-UK, V6, DOI [10.1038/srep25671, 10.1038/srep24454]