Identifying and characterizing high-risk clusters in a heterogeneous ICU population with deep embedded clustering

被引:24
作者
Forte, Jose Castela [1 ,2 ,3 ]
Yeshmagambetova, Galiya [3 ]
van der Grinten, Maureen L. [3 ]
Hiemstra, Bart [2 ]
Kaufmann, Thomas [2 ]
Eck, Ruben J. [4 ]
Keus, Frederik [5 ]
Epema, Anne H. [2 ]
Wiering, Marco A. [3 ]
van der Horst, Iwan C. C. [6 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Dept Clin Pharm & Pharmacol, Hanzepl 1,POB 30-00, NL-9700 RB Groningen, Netherlands
[2] Univ Groningen, Univ Med Ctr Groningen, Dept Anesthesiol, Groningen, Netherlands
[3] Univ Groningen, Bernoulli Inst Math Comp Sci & Artificial Intelli, Groningen, Netherlands
[4] Univ Groningen, Univ Med Ctr Groningen, Dept Internal Med, Groningen, Netherlands
[5] Univ Groningen, Univ Med Ctr Groningen, Dept Crit Care, Groningen, Netherlands
[6] Univ Maastricht, Maastricht Univ, Dept Intens Care, Med Ctr, Maastricht, Netherlands
关键词
SERUM-ALBUMIN; MORTALITY; VALIDATION; COHORT; LIVER;
D O I
10.1038/s41598-021-91297-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Critically ill patients constitute a highly heterogeneous population, with seemingly distinct patients having similar outcomes, and patients with the same admission diagnosis having opposite clinical trajectories. We aimed to develop a machine learning methodology that identifies and provides better characterization of patient clusters at high risk of mortality and kidney injury. We analysed prospectively collected data including co-morbidities, clinical examination, and laboratory parameters from a minimally-selected population of 743 patients admitted to the ICU of a Dutch hospital between 2015 and 2017. We compared four clustering methodologies and trained a classifier to predict and validate cluster membership. The contribution of different variables to the predicted cluster membership was assessed using SHapley Additive exPlanations values. We found that deep embedded clustering yielded better results compared to the traditional clustering algorithms. The best cluster configuration was achieved for 6 clusters. All clusters were clinically recognizable, and differed in in-ICU, 30-day, and 90-day mortality, as well as incidence of acute kidney injury. We identified two high mortality risk clusters with at least 60%, 40%, and 30% increased. ICU, 30-day and 90-day mortality, and a low risk cluster with 25-56% lower mortality risk. This machine learning methodology combining deep embedded clustering and variable importance analysis, which we made publicly available, is a possible solution to challenges previously encountered by clustering analyses in heterogeneous patient populations and may help improve the characterization of risk groups in critical care.
引用
收藏
页数:12
相关论文
共 35 条
  • [1] Systematic comparison of routine laboratory measurements with in-hospital mortality: ICU-Labome, a large cohort study of critically ill patients
    Alkozai, Edris M.
    Mahmoodi, Bakhtawar K.
    Decruyenaere, Johan
    Porte, Robert J.
    Lansink-Hartgring, Annemieke Oude
    Lisman, Ton
    Nijsten, Maarten W.
    [J]. CLINICAL CHEMISTRY AND LABORATORY MEDICINE, 2018, 56 (07) : 1140 - 1151
  • [2] What does the liver tell us about the failing heart?
    Auer, Johann
    [J]. EUROPEAN HEART JOURNAL, 2013, 34 (10) : 711 - 714
  • [3] Identification of Acute Kidney Injury Subphenotypes with Differing Molecular Signatures and Responses to Vasopressin Therapy
    Bhatraju, Pavan K.
    Zelnick, Leila R.
    Herting, Jerald
    Katz, Ronit
    Mikacenic, Carmen
    Kosamo, Susanna
    Morrell, Eric D.
    Robinson-Cohen, Cassianne
    Calfee, Carolyn S.
    Christie, Jason D.
    Liu, Kathleen D.
    Matthay, Michael A.
    Hahn, William O.
    Dmyterko, Victoria
    Slivinski, Natalie S. J.
    Russell, Jim A.
    Walley, Keith R.
    Christiani, David C.
    Liles, W. Conrad
    Himmelfarb, Jonathan
    Wurfel, Mark M.
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2019, 199 (07) : 863 - 872
  • [4] Chen T.Q., 2016, KDD16 P 22 ACM, DOI DOI 10.1145/2939672.2939785
  • [5] SERUM-ALBUMIN LEVEL AND PHYSICAL-DISABILITY AS PREDICTORS OF MORTALITY IN OLDER PERSONS
    CORTI, MC
    GURALNIK, JM
    SALIVE, ME
    SORKIN, JD
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1994, 272 (13): : 1036 - 1042
  • [6] The use of clustering algorithms in critical care research to unravel patient heterogeneity
    Forte, Jose Castela
    Perner, Anders
    van der Horst, Iwan C. C.
    [J]. INTENSIVE CARE MEDICINE, 2019, 45 (07) : 1025 - 1028
  • [7] Association of serum transaminases with short- and long-term outcomes in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention
    Gao, Ming
    Cheng, Yi
    Zheng, Yang
    Zhang, Weihua
    Wang, Lin
    Qin, Ling
    [J]. BMC CARDIOVASCULAR DISORDERS, 2017, 17
  • [8] Cardiovascular clusters in septic shock combining clinical and echocardiographic parameters: a post hoc analysis
    Geri, Guillaume
    Vignon, Philippe
    Aubry, Alix
    Fedou, Anne-Laure
    Charron, Cyril
    Silva, Stein
    Repesse, Xavier
    Vieillard-Baron, Antoine
    [J]. INTENSIVE CARE MEDICINE, 2019, 45 (05) : 657 - 667
  • [9] Association of serum albumin and mortality risk
    Goldwasser, P
    Feldman, J
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 1997, 50 (06) : 693 - 703
  • [10] On clustering validation techniques
    Halkidi, M
    Batistakis, Y
    Vazirgiannis, M
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2001, 17 (2-3) : 107 - 145