Magnetoresistive Hybrid Sensors for Simultaneous Low-Field MRI and Biomagnetic Measurements
被引:0
作者:
Sergeeva-Chollet, Natalia
论文数: 0引用数: 0
h-index: 0
机构:
CEA Saclay, DSM, IRAMIS, SPEC, F-91191 Gif Sur Yvette, FranceCEA Saclay, DSM, IRAMIS, SPEC, F-91191 Gif Sur Yvette, France
Sergeeva-Chollet, Natalia
[1
]
Dyvorne, Hadrien
论文数: 0引用数: 0
h-index: 0
机构:
CEA Saclay, DSM, IRAMIS, SPEC, F-91191 Gif Sur Yvette, FranceCEA Saclay, DSM, IRAMIS, SPEC, F-91191 Gif Sur Yvette, France
Dyvorne, Hadrien
[1
]
Polovy, Hedwige
论文数: 0引用数: 0
h-index: 0
机构:
CEA Saclay, DSM, IRAMIS, SPEC, F-91191 Gif Sur Yvette, FranceCEA Saclay, DSM, IRAMIS, SPEC, F-91191 Gif Sur Yvette, France
Polovy, Hedwige
[1
]
Pannetier-Lecoeur, Myriam
论文数: 0引用数: 0
h-index: 0
机构:
CEA Saclay, DSM, IRAMIS, SPEC, F-91191 Gif Sur Yvette, FranceCEA Saclay, DSM, IRAMIS, SPEC, F-91191 Gif Sur Yvette, France
Pannetier-Lecoeur, Myriam
[1
]
Fermon, Claude
论文数: 0引用数: 0
h-index: 0
机构:
CEA Saclay, DSM, IRAMIS, SPEC, F-91191 Gif Sur Yvette, FranceCEA Saclay, DSM, IRAMIS, SPEC, F-91191 Gif Sur Yvette, France
Fermon, Claude
[1
]
机构:
[1] CEA Saclay, DSM, IRAMIS, SPEC, F-91191 Gif Sur Yvette, France
来源:
17TH INTERNATIONAL CONFERENCE ON BIOMAGNETISM ADVANCES IN BIOMAGNETISM - BIOMAG2010
|
2010年
/
28卷
关键词:
GMR;
NMR;
low-field MRI;
MEG;
D O I:
暂无
中图分类号:
R318 [生物医学工程];
学科分类号:
0831 ;
摘要:
Recently developed magnetoresistive hybrid sensors can detect magnetic signals in the femtotesla range. This sensor is a combination of a Giant Magnetoresistive (GMR) field sensor and flux-to-field superconducting transformer [1]. Hybrid sensors are the good candidates for Low-Field Magnetic Resonance Imaging (LF-MRI) and neural signal detection. The primary advantages of these sensors are their robustness against external static fields and fast recovery after RF-pulses. We present the first the results obtained on low-field NMR with static fields up to 8 mT. MRI images obtained at LF-MRI without pre-polarization will be presented. Finally the combination of low-field MRI based on hybrid sensors with neural signal detection (MEG) will be discussed.