Effect of Annealing in Ar/H2 Environment on Chemical Vapor Deposition-Grown Graphene Transferred With Poly (Methyl Methacrylate)

被引:35
作者
Choi, Woosuk [1 ,2 ]
Seo, Young-Soo [1 ,2 ]
Park, Jun-Young [1 ,2 ]
Kim, K. B. [1 ,2 ]
Jung, Jongwan [1 ,2 ]
Lee, Naesung [1 ,2 ]
Seo, Yongho [1 ,2 ]
Hong, Suklyun [2 ,3 ]
机构
[1] Sejong Univ, Hybrid Mat Ctr, Fac Nanotechnol & Adv Mat Engn, Seoul 143747, South Korea
[2] Sejong Univ, Graphene Res Inst, Seoul 143747, South Korea
[3] Sejong Univ, Dept Phys, Seoul 143747, South Korea
关键词
Annealing; chemical vapor deposition (CVD) graphene; graphene transfer; Raman spectroscopy; RAMAN-SPECTROSCOPY; BORON-NITRIDE; LITHOGRAPHY; SCATTERING;
D O I
10.1109/TNANO.2014.2365208
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Poly(methyl methacrylate) (PMMA) is widely used for transferring chemical vapor deposition grown graphene. The residue of PMMA after the transfer degrades the electronic properties of the graphene, and the complete removal of PMMA has been a challenging issue. Annealing in Ar/H-2 gas flow has been commonly adopted to remove the PMMA residue. We studied the effect of annealing on graphene in the wide temperature range of 350-800 degrees C using Ar/H-2 forming gas, systematically. The conductivity was increased at moderate temperatures, but decreased at excessive temperatures higher than 650 degrees C. On the other hand, the PMMA residue was not removed effectively in all temperature ranges, judging from Raman spectroscopy and atomic force microscopy. By analyzing Raman spectroscopic data, chemisorption of PMMA residue on graphene was confirmed.
引用
收藏
页码:70 / 74
页数:5
相关论文
共 30 条
[1]   Probing the Intrinsic Properties of Exfoliated Graphene: Raman Spectroscopy of Free-Standing Monolayers [J].
Berciaud, Stephane ;
Ryu, Sunmin ;
Brus, Louis E. ;
Heinz, Tony F. .
NANO LETTERS, 2009, 9 (01) :346-352
[2]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[3]   Raman Spectroscopy of Ripple Formation in Suspended Graphene [J].
Chen, Chun-Chung ;
Bao, Wenzhong ;
Theiss, Jesse ;
Dames, Chris ;
Lau, Chun Ning ;
Cronin, Stephen B. .
NANO LETTERS, 2009, 9 (12) :4172-4176
[4]   Charged-impurity scattering in graphene [J].
Chen, J. -H. ;
Jang, C. ;
Adam, S. ;
Fuhrer, M. S. ;
Williams, E. D. ;
Ishigami, M. .
NATURE PHYSICS, 2008, 4 (05) :377-381
[5]   FABRICATION OF 5-7 NM WIDE ETCHED LINES IN SILICON USING 100 KEV ELECTRON-BEAM LITHOGRAPHY AND POLYMETHYLMETHACRYLATE RESIST [J].
CHEN, W ;
AHMED, H .
APPLIED PHYSICS LETTERS, 1993, 62 (13) :1499-1501
[6]   Toward Intrinsic Graphene Surfaces: A Systematic Study on Thermal Annealing and Wet-Chemical Treatment of SiO2-Supported Graphene Devices [J].
Cheng, Zengguang ;
Zhou, Qiaoyu ;
Wang, Chenxuan ;
Li, Qiang ;
Wang, Chen ;
Fang, Ying .
NANO LETTERS, 2011, 11 (02) :767-771
[7]   Raman spectroscopic image analysis on micropatterned graphene [J].
Choi, Wooseok ;
Park, Joonkyu ;
Jung, Jongwan ;
Seo, Yongho ;
Ahn, Jinho ;
Park, In-Sung .
MICRO & NANO LETTERS, 2013, 8 (07) :362-365
[8]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215
[9]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[10]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)