Modules of covariants in modular invariant theory

被引:4
作者
Broer, Abraham [1 ]
Chuai, Jianjun [2 ]
机构
[1] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
[2] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
COHEN-MACAULAY RINGS; RELATIVE INVARIANTS; REFLECTION GROUPS;
D O I
10.1112/plms/pdp044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let the finite group G act linearly on the vector space V over the field k of arbitrary characteristic, and let H < G be a subgroup. The extension of invariant rings k[V](G) subset of k[V](H) is studied using modules of covariants. An example of our results is the following. Let W be the subgroup of G generated by the reflections in G. A classical theorem due to Serre says that if k[V] is a free k[V](G)-module then G - W. We generalize this result as follows. If k[V](H) is a free k[V](G)-module, then G is generated by H and W. Furthermore, the invariant ring k[V]H boolean AND W is free over k[V](W) and is generated as an algebra by H-invariants and W-invariants.
引用
收藏
页码:705 / 735
页数:31
相关论文
共 33 条
[1]  
[Anonymous], 1965, Inst. Hautes Etudes Sci. Publ. Math., P231, DOI 10.1007/BF02684322
[2]  
Auslander M., 1960, T AM MATH SOC, V97, P367, DOI DOI 10.2307/1993378
[3]   PSEUDO-REFLECTION GROUP-ACTIONS ON LOCAL-RINGS [J].
AVRAMOV, LL .
NAGOYA MATHEMATICAL JOURNAL, 1982, 88 (DEC) :161-180
[4]   A RAMIFICATION FORMULA FOR POINCARE-SERIES, AND A HYPERPLANE FORMULA FOR MODULAR INVARIANTS [J].
BENSON, DJ ;
CRAWLEYBOEVEY, WW .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1995, 27 :435-440
[5]  
Benson DJ, 1993, LONDON MATH SOC LECT
[6]  
Bourbaki, 1965, ALGEBRE COMMUTATIVE
[7]  
BOURBAKI N, 1981, GROUPES ALGEBRES LIE, pCH4, DOI DOI 10.1007/978-3-540-34491-9
[8]  
BRION M, 1993, ANN SCI ECOLE NORM S, V26, P1
[9]   The direct summand property in modular invariant theory [J].
Broer, A .
TRANSFORMATION GROUPS, 2005, 10 (01) :5-27
[10]   Hypersurfaces in modular invariant theory [J].
Broer, Abraham .
JOURNAL OF ALGEBRA, 2006, 306 (02) :576-590