Recurrence speed of multiples of an irrational number

被引:11
作者
Choe, GH [1 ]
Seo, BK [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math, Taejon 305701, South Korea
关键词
recurrence time; irrational translation; continued fractions;
D O I
10.3792/pjaa.77.134
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let 0 < <theta> < 1 be irrational and T(<theta>)x = x + theta mod 1 on (0, 1). Consider the partition Q(n) = {((i-1)/2(n), i/2(n)) : 1 less than or equal to i less than or equal to 2(n)} and let Q(n)(x) denote the interval in Q(n) containing x. Define two versions of the first return time: J(n)(x) = min{j greater than or equal to 1 : parallel tox - T(theta)(j)x parallel to = parallel toj . theta parallel to < 1/2(n)} where <parallel>t parallel to = min(n is an element ofZ) vertical bart -n vertical bar, and K-n(x) = min{j greater than or equal to 1 : T-theta(j) x is an element of Q(n)(x)}. We show that log J(n)/n --> 1 and log K-n(x)/n --> 1 a.e. as n --> infinity for a.e. theta.
引用
收藏
页码:134 / 137
页数:4
相关论文
共 8 条
[1]  
CHOE G, 2001, UNPUB UNIVERSAL LAW
[2]   The Hausdorff dimension of recurrent sets in symbolic spaces [J].
Feng, DJ ;
Wu, J .
NONLINEARITY, 2001, 14 (01) :81-85
[4]  
Khinchin A. Ya., 1964, Continued fractions
[5]  
KUIPERS L, 1974, UNIFORM DISTRIBUTION
[6]   ENTROPY AND DATA-COMPRESSION SCHEMES [J].
ORNSTEIN, DS ;
WEISS, B .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (01) :78-83
[7]  
Rockett A. M., 1992, Continued fractions
[8]  
Shields P C, 1996, GRADUATE STUDIES MAT, V13