PNP PIN bipolar phototransistors for high-speed applications built in a 180 nm CMOS process

被引:11
作者
Kostov, P. [1 ]
Gaberl, W. [1 ]
Hofbauer, M. [1 ]
Zimmermann, H. [1 ]
机构
[1] Vienna Univ Technol, Inst Electrodynam Microwave & Circuit Engn, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
PNP; PIN; Integrated phototransistor; Light detector; Silicon; Photodetector; OPTOELECTRONIC INTEGRATED-CIRCUITS; OPTICAL RECEIVERS; SILICON; TECHNOLOGY; PHOTODIODES; EFFICIENCY; BICMOS;
D O I
10.1016/j.sse.2012.04.011
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work reports on three speed optimized pnp bipolar phototransistors build in a standard 180 nm CMOS process using a special starting wafer. The starting wafer consists of a low doped p epitaxial layer on top of the p substrate. This low doped p epitaxial layer leads to a thick space-charge region between base and collector and thus to a high -3 dB bandwidth at low collector-emitter voltages. For a further increase of the bandwidth the presented phototransistors were designed with small emitter areas resulting in a small base-emitter capacitance. The three presented phototransistors were implemented in sizes of 40 x 40 mu m(2) and 100 x 100 mu m(2). Optical DC and AC measurements at 410 nm, 675 nm and 850 nm were done for phototransistor characterization. Due to the speed optimized design and the layer structure of the phototransistors, bandwidths up to 76.9 MHz and dynamic responsivities up to 2.89 A/W were achieved. Furthermore simulations of the electric field strength and space-charge regions were done. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:49 / 57
页数:9
相关论文
共 24 条
[1]   CMOS Technology Scaling Considerations for Multi-Gbps Optical Receivers With Integrated Photodetectors [J].
Carusone, Anthony Chan ;
Yasotharan, Hemesh ;
Kao, Tony .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2011, 46 (08) :1832-1842
[2]   QUANTUM EFFICIENCY OF INTERNAL PHOTOELECTRIC EFFECT IN SILICON AND GERMANIUM [J].
CHRISTENSEN, O .
JOURNAL OF APPLIED PHYSICS, 1976, 47 (02) :689-695
[3]   Integrated Silicon PIN Photodiodes Using Deep N-Well in a Standard 0.18-μm CMOS Technology [J].
Ciftcioglu, Berkehan ;
Zhang, Lin ;
Zhang, Jie ;
Marciante, John R. ;
Zuegel, Jonathan ;
Sobolewski, Roman ;
Wu, Hui .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2009, 27 (15) :3303-3313
[4]   Avalanche photodiodes and quenching circuits for single-photon detection [J].
Cova, S ;
Ghioni, M ;
Lacaita, A ;
Samori, C ;
Zappa, F .
APPLIED OPTICS, 1996, 35 (12) :1956-1976
[5]   TOF Range Finding Sensor in 90nm CMOS Capable of Suppressing 180 klx Ambient light [J].
Davidovic, Milos ;
Zach, Gerald ;
Schneider-Hornstein, Kerstin ;
Zimmermann, Horst .
2010 IEEE SENSORS, 2010, :2413-2416
[6]   QUANTUM YIELD OF SILICON IN THE VISIBLE [J].
GEIST, J ;
ZALEWSKI, EF .
APPLIED PHYSICS LETTERS, 1979, 35 (07) :503-506
[7]   CMOS Optoelectronic Lock-In Amplifier With Integrated Phototransistor Array [J].
Hu, An ;
Chodavarapu, Vamsy P. .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2010, 4 (05) :274-280
[8]   Silicon-based optical receivers in BiCMOS technology for advanced optoelectronic integrated circuits [J].
Kieschnick, K ;
Zimmermann, H ;
Seegebrecht, P .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2000, 3 (5-6) :395-398
[9]  
Kirk C., 1962, IRE T ELECTRON DEV, V9, P164, DOI DOI 10.1109/T-ED.1962.14965
[10]   Phototransistors for CMOS Optoelectronic Integrated Circuits [J].
Kostov, P. ;
Schneider-Hornstein, K. ;
Zimmermann, H. .
SENSORS AND ACTUATORS A-PHYSICAL, 2011, 172 (01) :140-147