Topological properties of the attractors of iterated function systems

被引:0
作者
Dumitru, Dan [1 ]
机构
[1] Spiru Haret Univ Bucharest, Dept Math & Comp Sci, Bucharest, Romania
来源
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA | 2011年 / 19卷 / 03期
关键词
attractors; iterated function system; arcwise connected; connected;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate necessary conditions for an attractor of an iterated function system to have a finite number of connected components. Then we prove that each connected component of an attractor of an iterated function system which has a finite number of connected components is also arcwise connected. We also emphasize by a counterexample, that the result does not hold when the attractor has an infinite number of connected components.
引用
收藏
页码:117 / 126
页数:10
相关论文
共 9 条
[1]  
Barnsley M., 1993, FRACTALS EVERYWHERE
[2]  
Dumitru D., 2008, AN STIINT U BUCUREST, V1, P75
[3]  
FALCONER KJ, 1990, FRACTAL GEOMETRY FDN
[4]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747
[5]  
Kigami J., 2001, ANAL FRACTALS
[6]  
Miculescu R, 2008, P AM MATH SOC, V136, P587
[7]  
Mihail A, 2008, REAL ANAL EXCH, V34, P195
[8]  
Secelean A., 2001, Far East J. Dyn. Syst., V3, P149
[9]  
YAMAGUTI M, 1997, TRANSLATIONS MATH MO, V167