The four compounds BaGa(2)MQ(6) (M = Si, Ge; Q = S, Se) have been identified as a new series of IR nonlinear optical (NLO) materials and are promising for practical applications. They are isostructural and crystallize in the noncentrosymmetric polar space group R3 of the trigonal system. Their three-dimensional framework is composed of corner-sharing (Ga/M)Q(4) (M = Si, Ge; Q = S, Se) tetrahedra with Ba2+ cations in the cavities. The polar alignment of one (Ga/M)-Q(2) bond for each (Ga/M)Q(4) tetrahedra along the c direction is conducive to generating a large NLO response, which was confirmed by powder second-harmonic generation (SHG) using a 2090 nm laser as fundamental wavelength. The SHG signal intensities of the two sulfides were close to that of AgGaS2 and those for the two selenides were similar as that of AgGaSe2. The large band gaps of 3.75(2) eV, 3.23(2) eV, 2.88(2) eV, and 2.22 (2) eV for BaGa2SiS6, BaGa2GeS6, BaGa2SiSe6, and BaGa2GeSe6, respectively, will be very helpful to increase the laser damage threshold. Moreover, all the four BaGa(2)MQ(6) (M = Si, Ge; Q = S, Se) compounds exhibit congruent-melting behavior, which indicates that bulk crystals needed for practical applications can be obtained by the Bridgman-Stockbarger method. The calculated birefringence indicates that these materials may be phase-matchable in the IR region and the calculated SHG coefficients agree with the experimental observations. According to our preliminary study, the BaGa(2)MQ(6) compounds represent a new series of promising IR nonlinear optical (NLO) materials which do not belong to the traditional chalcopyrite-type materials such as AgGaQ(2) (Q = S, Se) and ZnGeP2.