Comparison of photoelectrochemical properties of TiO2 Nanotubes and sol-gel

被引:20
作者
Regonini, D. [1 ]
Chen, G. [2 ]
Leach, C. [2 ]
Clemens, F. J. [1 ]
机构
[1] EMPA Swiss Fed Labs Mat Sci & Technol, Lab High Performance Ceram, Uberlandstr 129, CH-8600 Dubendorf, Switzerland
[2] Univ Manchester, Sch Mat, Manchester M13 9PL, Lancs, England
基金
瑞士国家科学基金会;
关键词
TiO2; Anodization; Nanotubes; Photoelectrochemical Cells; EELS; HEAT-TREATMENT; WATER-CONTENT; TITANIUM; NANOMATERIALS; MICROSCOPY; GROWTH;
D O I
10.1016/j.electacta.2016.07.097
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The photoelectrochemical properties of anodized TiO2 Nanotubes (NTs) grown using low (2 wt.%) and high (12 wt.%) water content and of nanostructured TiO2 obtained by a Sol-Gel method (SG) are investigated and compared. It is shown that, providing the NTs are grown using 12 wt.% H2O, the photocurrent densities of the NTs and the SG are very similar (950 mA/cm(2)). The Incident Photon to Current Efficiency (IPCE) of the SG is higher (maximum 42% at 300 nm) due to the space charge layer generated within the SG network. Electrochemical Impedance Spectroscopy (EIS) suggests that NTs, regardless of the water content used to prepare them, are more defective than the SG. The presence of deep traps, detrimental to electron transport, is particularly significant in NTs grown in 2 wt.% H2O, in agreement with their lower photocurrent density and IPCE (maximum 30% at 340 nm). Electron Energy Loss Spectroscopy (EELS) reveals that NTs grown in 2 wt.% H2O are rich in Ti2+ ions, which are associated with the deep traps detected by EIS. High-Resolution TEM analysis reveals a (004) anatase crystal texture for the NTs grown in 2 wt.% H2O and a (101) anatase crystal texture for the NTs 12 wt.% H2O, whereas no significant texture is observed in the SG. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:31 / 36
页数:6
相关论文
共 33 条
[1]   The effect of anatase crystal orientation on the photoelectrochemical performance of anodic TiO2 nanotubes [J].
Acevedo-Pena, Prospero ;
Gonzalez, Federico ;
Gonzalez, Gonzalo ;
Gonzalez, Ignacio .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (47) :26213-26220
[2]   Metal Oxide Photoanodes for Water Splitting [J].
Augustynski, J. ;
Alexander, B. D. ;
Solarska, R. .
PHOTOCATALYSIS, 2011, 303 :1-38
[3]   Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes -: art. no. 243114 [J].
Beranek, R ;
Tsuchiya, H ;
Sugishima, T ;
Macak, JM ;
Taveira, L ;
Fujimoto, S ;
Kisch, H ;
Schmuki, P .
APPLIED PHYSICS LETTERS, 2005, 87 (24) :1-3
[4]   (Photo) electrochemical Methods for the Determination of the Band Edge Positions of TiO2-Based Nanomaterials [J].
Beranek, Radim .
ADVANCES IN PHYSICAL CHEMISTRY, 2011,
[5]  
C.S. Ltd, CASAXPS VERS 2 3 16
[7]   Transmission Electron Microscopy Study of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Perovskite Decomposition at Intermediate Temperatures [J].
Efimov, Konstantin ;
Xu, Qiang ;
Feldhoff, Armin .
CHEMISTRY OF MATERIALS, 2010, 22 (21) :5866-5875
[8]   Mesoporous TiO2: Comparison of Classical Sol-Gel and Nanoparticle Based Photoelectrodes for the Water Splitting Reaction [J].
Hartmann, Pascal ;
Lee, Doh-Kwon ;
Smarsly, Bernd M. ;
Janek, Juergen .
ACS NANO, 2010, 4 (06) :3147-3154
[9]   Characterisation of titanium oxide film grown in 0.9% NaCl at different sweep rates [J].
Huang, YZ ;
Blackwood, DJ .
ELECTROCHIMICA ACTA, 2005, 51 (06) :1099-1107
[10]   A microscopy study of the effect of heat treatment on the structure and properties of anodised TiO2 nanotubes [J].
Jaroenworaluck, A. ;
Regonini, D. ;
Bowen, C. R. ;
Stevens, R. .
APPLIED SURFACE SCIENCE, 2010, 256 (09) :2672-2679