K-theory for C*-algebras of one-relator groups

被引:22
作者
Béguin, C [1 ]
Bettaieb, H [1 ]
Valette, A [1 ]
机构
[1] Univ Neuchatel, Inst Math, CH-2000 Neuchatel, Switzerland
关键词
one-relator groups; reduced C*-algebra; Baum-Connes conjecture; K-amenability;
D O I
10.1023/A:1007755408585
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute the K-theory groups of the reduced C*-algebra C-r*(Gamma) of a one-relator group Gamma. We prove that every such group is K-amenable in the sense of Cuntz. For a torsion-free one-relator group Gamma = [X\r] such that, is not a product of commutators, we give a direct proof of the fact that the Baum-Connes analytical assembly map mu(i)(Gamma): K-i(B Gamma) --> K-i(C-r*(Gamma)) (i = 0,1) is an isomorphism. From recent results of Oyono and Tu, we deduce that the Baum-Connes conjecture with coefficients holds for any one-relator group, as well as for fundamental groups of Haken 3-manifolds (e.g. for all knot groups). In particular, if Gamma is a torsion-free group in one of these classes, then C-r*(Gamma) has no nontrivial idempotent. Mathematics Subject Classifications (1991): 20F05, 20E06, 46L80, 55N15.
引用
收藏
页码:277 / 298
页数:22
相关论文
共 36 条
[1]  
ANDERSON J, 1986, J OPERAT THEOR, V16, P165
[2]  
[Anonymous], 1977, ERGEB MATH GRENZGEB
[3]  
Baum P., 1994, CONT MATH, V167, P241
[4]  
BAUM P, 1982, GEOMETRIC K THEORY L
[5]  
BAUM P, 1988, FETE TOPOLOGY, P163
[6]  
BAUM P, 1988, OPERATOR ALGEBRAS AP, V1, P1
[7]  
BAUMSLAG G, 1996, LONDON MATH SOC LECT, V121, P30
[8]  
Bettaieb H, 1996, CR ACAD SCI I-MATH, V322, P925
[9]   HOMOTOPY INVARIANCE OF HIGHER SIGNATURES [J].
CAPPELL, SE .
INVENTIONES MATHEMATICAE, 1976, 33 (02) :171-179
[10]  
CECCHERINISILBE.T, ENSEIGN MATH, V43, P337