Quantum Mechanics and Paradigm Shifts

被引:5
作者
Allori, Valia [1 ]
机构
[1] No Illinois Univ, Dept Philosophy, De Kalb, IL 60115 USA
来源
TOPOI-AN INTERNATIONAL REVIEW OF PHILOSOPHY | 2015年 / 34卷 / 02期
基金
英国科研创新办公室;
关键词
Quantum mechanics; Classical mechanics; Kuhnian scientific revolutions; Paradigm shifts; CURRENT SITUATION;
D O I
10.1007/s11245-014-9295-y
中图分类号
B [哲学、宗教];
学科分类号
01 ; 0101 ;
摘要
It has been argued that the transition from classical to quantum mechanics is an example of a Kuhnian scientific revolution, in which there is a shift from the simple, intuitive, straightforward classical paradigm, to the quantum, convoluted, counterintuitive, amazing new quantum paradigm. In this paper, after having clarified what these quantum paradigms are supposed to be, I analyze whether they constitute a radical departure from the classical paradigm. Contrary to what is commonly maintained, I argue that, in addition to radical quantum paradigms, there are also legitimate ways of understanding the quantum world that do not require any substantial change to the classical paradigm.
引用
收藏
页码:313 / 323
页数:11
相关论文
共 37 条
[1]  
Albert DZ, 1996, U W ONT PHI, V57, P81
[2]  
Albert DZ, 1996, BOST STUD PHILOS SCI, V184, P277
[3]   On the common structure of Bohmian mechanics and the Ghirardi-Rimini-Weber theory [J].
Allori, Valia ;
Goldstein, Sheldon ;
Tumulka, Roderich ;
Zanghi, Nino .
BRITISH JOURNAL FOR THE PHILOSOPHY OF SCIENCE, 2008, 59 (03) :353-389
[4]   Many Worlds and Schrodinger's First Quantum Theory [J].
Allori, Valia ;
Goldstein, Sheldon ;
Tumulka, Roderich ;
Zanghi, Nino .
BRITISH JOURNAL FOR THE PHILOSOPHY OF SCIENCE, 2011, 62 (01) :1-27
[5]  
[Anonymous], 2009, The structure of scientific revolutions
[6]  
[Anonymous], LIB LIVING PHILOS
[7]  
[Anonymous], 1971, PHYS AND BEYOND
[8]   EXPERIMENTAL TESTS OF REALISTIC LOCAL THEORIES VIA BELLS THEOREM [J].
ASPECT, A ;
GRANGIER, P ;
ROGER, G .
PHYSICAL REVIEW LETTERS, 1981, 47 (07) :460-463
[9]  
BARRETT JA, 1998, STANFORD ENCY PHILOS
[10]  
Bell JS., 1964, Phys Phys Fiz, V1, P195, DOI [10.1103/PhysicsPhysiqueFizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195, 10.1103/Physics-PhysiqueFizika.1.195]