Lie symmetry and the generalized Hojman conserved quantity of Nielsen equations for a variable mass holonomic system of relative motion

被引:0
作者
Mei-Ling, Zhang [1 ]
Xian-Ting, Sun [2 ]
Xiao-Xiao, Wang [1 ]
Yin-Li, Xie [1 ]
Li-Qun, Jia [1 ]
机构
[1] Jiangnan Univ, Sch Sci, Wuxi 214122, Peoples R China
[2] Pingdingshan Univ, Sch Elect & Informat Engn, Pingdingshan 467002, Peoples R China
关键词
variable mass; relative motion; Lie symmetry; generalized Hojman conserved quantity; NONHOLONOMIC MECHANICAL SYSTEMS; NOETHER ADIABATIC INVARIANTS; MEI SYMMETRY; CONFORMAL-INVARIANCE; LAGRANGIAN SYSTEMS; FORM INVARIANCE; LUTZKY TYPE; PERTURBATION; CONSTRAINTS;
D O I
10.1088/1674-1056/20/11/110202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Lie symmetry and the generalized Hojman conserved quantity of Nielsen equations for a variable mass holonomic system of relative motion are studied. The determining equation of Lie symmetry of Nielsen equations for a variable mass holonomic system of relative motion under the infinitesimal transformations of groups is given. The expression of generalized Hojman conserved quantity deduced directly from Lie symmetry for a variable mass holonomic system of relative motion is obtained. An example is given to illustrate the application of the results.
引用
收藏
页数:4
相关论文
共 50 条
[21]   Mei symmetry and Mei conserved quantity of Nielsen equations for a non-holonomic system of Chetaev's type with variable mass [J].
杨新芳 ;
贾利群 ;
崔金超 ;
罗绍凯 .
Chinese Physics B, 2010, 19 (03) :40-44
[22]   Lie symmetry and Hojman conserved quantity of Nambu system [J].
蔺鹏 ;
方建会 ;
庞婷 .
Chinese Physics B, 2008, 17 (12) :4361-4364
[23]   Lie symmetry and Hojman conserved quantity of Nambu system [J].
Lin Peng ;
Fang Jian-Hui ;
Pang Ting .
CHINESE PHYSICS B, 2008, 17 (12) :4361-4364
[24]   Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system [J].
崔金超 ;
张耀宇 ;
杨新芳 ;
贾利群 .
Chinese Physics B, 2010, 19 (03) :35-39
[25]   Conformal invariance and conserved quantity of Mei symmetry for Appell equation in a holonomic system in relative motion [J].
Zhang Fang ;
Zhang Yao-Yu ;
Xue Xi-Chang ;
Jia Li-Qun .
ACTA PHYSICA SINICA, 2015, 64 (13)
[26]   Lie symmetry and approximate Hojman conserved quantity of Appell equations for a weakly nonholonomic system [J].
Yuelin Han ;
Xiaoxiao Wang ;
Meiling Zhang ;
Liqun Jia .
Nonlinear Dynamics, 2013, 71 :401-408
[27]   Special Lie symmetry and Hojman conserved quantity of Appell equations for a Chetaev nonholonomic system [J].
Yuelin Han ;
Xiaoxiao Wang ;
Meiling Zhang ;
Liqun Jia .
Nonlinear Dynamics, 2013, 73 :357-361
[28]   Conformal invariance and conserved quantity of Mei symmetry for Appell equations in a holonomic system with mass variable [J].
Zhang, YaoYu ;
Sun, XianTing ;
Xue, XiChang ;
Jia, LiQun .
APPLIED MECHANICS, MATERIALS AND MANUFACTURING IV, 2014, 670-671 :617-625
[29]   A type of new conserved quantity deduced from Mei symmetry for Nielsen equations in a holonomic system with unilateral constraints [J].
Han Yue-Lin ;
Sun Xian-Ting ;
Wang Xiao-Xiao ;
Zhang Mei-Ling ;
Jia Li-Qun .
CHINESE PHYSICS B, 2012, 21 (12)
[30]   A type of new conserved quantity of Mei symmetry for Appell equations in a holonomic system [J].
Sun Xian-Ting ;
Han Yue-Lin ;
Wang Xiao-Xiao ;
Zhang Mei-Ling ;
Jia Li-Qun .
ACTA PHYSICA SINICA, 2012, 61 (20)