On the Model of Non-holonomic Billiard

被引:4
作者
Borisov, Alexey V. [1 ]
Kilin, Alexander A. [1 ]
Mamaev, Ivan S. [1 ]
机构
[1] Udmurt State Univ, Inst Comp Sci, Izhevsk 426034, Russia
关键词
billiard; impact; point map; nonintegrability; periodic solution; nonholonomic constraint; integral of motion; IMPACT; BALL;
D O I
10.1134/S1560354711060062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we develop a new model of non-holonomic billiard that accounts for the intrinsic rotation of the billiard ball. This model is a limit case of the problem of rolling without slipping of a ball without slipping over a quadric surface. The billiards between two parallel walls and inside a circle are studied in detail. Using the three-dimensional-point-map technique, the non-integrability of the non-holonomic billiard within an ellipse is shown.
引用
收藏
页码:653 / 662
页数:10
相关论文
共 25 条
[1]  
[Anonymous], 1835, THEORIE MATH EFFETS
[2]  
Appell P., 1911, J MATH PURES APPL 6, V7, P85
[3]  
BAYES J, 1963, AM J PHYS, V3, P197
[4]   ROLLING OF A BALL ON A SURFACE. NEW INTEGRALS AND HIERARCHY OF DYNAMICS [J].
Borisov, A. V. ;
Mamaev, I. S. ;
Kilin, A. A. .
REGULAR & CHAOTIC DYNAMICS, 2002, 7 (02) :201-219
[5]  
Chatterjee A, 1997, THESIS CORNELL U
[6]   Grip-slip behavior of a bouncing ball [J].
Cross, R .
AMERICAN JOURNAL OF PHYSICS, 2002, 70 (11) :1093-1102
[7]  
Derby N., 1999, PHYS TEACH, V37, P24, DOI [10.1119/1.880156, DOI 10.1119/1.880156]
[8]  
Dragovic V., 2010, INTEGRABLE BILLIARDS
[9]   On frictionless impact models in rigid-body systems [J].
Glocker, C .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 359 (1789) :2385-2404
[10]  
Goldsmith W., 1960, Impact: The Theory of Physical Behaviour of Colliding Solids