Quantitative photoacoustic integrating sphere (QPAIS) platform for absorption coefficient and Gruneisen parameter measurements: Demonstration with human blood

被引:2
作者
Villanueva-Palero, Yolanda [1 ]
Hondebrink, Erwin [1 ]
Petersen, Wilma [1 ]
Steenbergen, Wiendelt [1 ]
机构
[1] Univ Twente, MIRA Inst Biomed Technol & Tech Med, Biomed Photon Imaging Grp, POB 217, NL-7500 AE Enschede, Netherlands
关键词
Photoacoustics; Absorption coefficient; Gruneisen parameter; Integrating sphere; Quantitative photoacoustics; Human blood; OPTICAL-PROPERTIES; MEDIA;
D O I
10.1016/j.pacs.2017.03.004
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Quantitative photoacoustic imaging in biomedicine relies on accurate measurements of relevant material properties of target absorbers. Here, we present a method for simultaneous measurements of the absorption coefficient and Gruneisen parameter of small volume of liquid scattering and absorbing media using a coupled-integrating sphere system which we refer to as quantitative photoacoustic integrating sphere (QPAIS) platform. The derived equations do not require absolute magnitudes of optical energy and pressure values, only calibration of the setup using aqueous ink dilutions is necessary. As a demonstration, measurements with blood samples from various human donors are done at room and body temperatures using an incubator. Measured absorption coefficient values are consistent with known oxygen saturation dependence of blood absorption at 750 nm, whereas measured Gruneisen parameter values indicate variability among five different donors. An increasing Gruneisen parameter value with both hematocrit and temperature is observed. These observations are consistent with those reported in literature. (C) 2017 University of Twente. Published by Elsevier GmbH.
引用
收藏
页码:9 / 15
页数:7
相关论文
共 15 条
[1]   FAHRAEUS EFFECT [J].
BARBEE, JH ;
COKELET, GR .
MICROVASCULAR RESEARCH, 1971, 3 (01) :6-&
[2]   A literature review and novel theoretical approach on the optical properties of whole blood [J].
Bosschaart, Nienke ;
Edelman, Gerda J. ;
Aalders, Maurice C. G. ;
van Leeuwen, Ton G. ;
Faber, Dirk J. .
LASERS IN MEDICAL SCIENCE, 2014, 29 (02) :453-479
[3]   Quantitative spectroscopic photoacoustic imaging: a review [J].
Cox, Ben ;
Laufer, Jan G. ;
Arridge, Simon R. ;
Beard, Paul C. .
JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (06)
[4]  
ELTERMAN P, 1969, J OPT SOC AM, V59, P1537
[5]  
Gusev V.E., 1993, Laser Optoacoustics, Vfirst
[6]  
Karabutov AA, 1996, APPL PHYS B-LASERS O, V63, P545
[7]   Real-time optoacoustic monitoring of temperature in tissues [J].
Larina, IV ;
Larin, KV ;
Esenaliev, RO .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (15) :2633-2639
[8]   Opto-acoustic measurement of the local light absorption coefficient in turbid media: 1. Monte-Carlo simulation of laser fluence distribution at the beam axis beneath the surface of a turbid medium [J].
Pelivanov, I. M. ;
Barskaya, M. D. ;
Podymova, N. B. ;
Khokhlova, T. D. ;
Karabutov, A. A. .
QUANTUM ELECTRONICS, 2009, 39 (09) :830-834
[9]   Red blood cell as a universal optoacoustic sensor for non-invasive temperature monitoring [J].
Petrova, Elena V. ;
Oraevsky, Alexander A. ;
Ermilov, Sergey A. .
APPLIED PHYSICS LETTERS, 2014, 105 (09)
[10]   Optical properties of blood at various levels of oxygenation studied by time resolved detection of laser-induced pressure profiles [J].
Savateeva, EV ;
Karabutov, AA ;
Solomatin, SV ;
Oraevsky, AA .
BIOMEDICAL OPTOACOUSTICS III, 2002, 4618 :63-75