A New Method for Large-Scale Landslide Classification from Satellite Radar

被引:49
作者
Burrows, Katy [1 ]
Walters, Richard J. [1 ]
Milledge, David [2 ]
Spaans, Karsten [3 ]
Densmore, Alexander L. [4 ]
机构
[1] Univ Durham, Dept Earth Sci, Ctr Observat & Modelling Earthquakes Volcanoes &, Durham DH1 3LE, England
[2] Newcastle Univ, Sch Engn, Newcastle Upon Tyne, Tyne & Wear NE1 7RU, England
[3] Satsense, Ctr Observat & Modelling Earthquakes Volcanoes &, Leeds LS2 9DF, W Yorkshire, England
[4] Univ Durham, Dept Geog, Durham DH1 3LE, England
关键词
landslides; emergency response; synthetic aperture radar; 7.8 GORKHA EARTHQUAKE; TRIGGERED LANDSLIDE; EMERGENCY RESPONSE; SAR; NEPAL; INTERFEROMETRY; DECORRELATION; IMAGES; STATE; TIME;
D O I
10.3390/rs11030237
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Following a large continental earthquake, information on the spatial distribution of triggered landslides is required as quickly as possible for use in emergency response coordination. Synthetic Aperture Radar (SAR) methods have the potential to overcome variability in weather conditions, which often causes delays of days or weeks when mapping landslides using optical satellite imagery. Here we test landslide classifiers based on SAR coherence, which is estimated from the similarity in phase change in time between small ensembles of pixels. We test two existing SAR-coherence-based landslide classifiers against an independent inventory of landslides triggered following the M-w 7.8 Gorkha, Nepal earthquake, and present and test a new method, which uses a classifier based on coherence calculated from ensembles of neighbouring pixels and coherence calculated from a more dispersed ensemble of 'sibling' pixels. Using Receiver Operating Characteristic analysis, we show that none of these three SAR-coherence-based landslide classification methods are suitable for mapping individual landslides on a pixel-by-pixel basis. However, they show potential in generating lower-resolution density maps, which are used by emergency responders following an earthquake to coordinate large-scale operations and identify priority areas. The new method we present outperforms existing methods when tested at these lower resolutions, suggesting that it may be able to provide useful and rapid information on landslide distributions following major continental earthquakes.
引用
收藏
页数:24
相关论文
共 49 条
[1]  
[Anonymous], 1998, EOS Trans AGU, DOI [10.1029/98EO00426, DOI 10.1029/98EO00426]
[2]   Synthetic aperture radar interferometry [J].
Bamler, R ;
Hartl, P .
INVERSE PROBLEMS, 1998, 14 (04) :R1-R54
[3]   Validation and evaluation of predictive models in hazard assessment and risk management [J].
Beguería, S .
NATURAL HAZARDS, 2006, 37 (03) :315-329
[4]   Landslide state of activity maps by combining multi-temporal A-DInSAR (LAMBDA) [J].
Boni, Roberta ;
Bordoni, Massimiliano ;
Colombo, Alessio ;
Lanteri, Luca ;
Meisina, Claudia .
REMOTE SENSING OF ENVIRONMENT, 2018, 217 :172-190
[5]  
Collins B.D., 2015, Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence, DOI DOI 10.3133/OFR20151142
[6]   Exact histogram specification [J].
Coltuc, D ;
Bolon, P ;
Chassery, JM .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (05) :1143-1152
[7]   Post-failure evolution analysis of a rainfall-triggered landslide by multi-temporal interferometry SAR approaches integrated with geotechnical analysis [J].
Confuorto, Pierluigi ;
Di Martire, Diego ;
Centolanza, Giuseppe ;
Iglesias, Ruben ;
Mallorqui, Jordi J. ;
Novellino, Alessandro ;
Plank, Simon ;
Ramondini, Massimo ;
Thuro, Kurosch ;
Calcaterra, Domenico .
REMOTE SENSING OF ENVIRONMENT, 2017, 188 :51-72
[8]   The 12 May Wenchuan earthquake-induced landslide lakes: distribution and preliminary risk evaluation [J].
Cui, Peng ;
Zhu, Ying-yan ;
Han, Yong-shun ;
Chen, Xiao-qing ;
Zhuang, Jian-qi .
LANDSLIDES, 2009, 6 (03) :209-223
[9]   Polarimetric synthetic aperture radar study of the Tsaoling landslide generated by the 1999 Chi-Chi earthquake, Taiwan [J].
Czuchlewski, KR ;
Weissel, JK ;
Kim, Y .
JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2003, 108 (F1)
[10]  
Datta Ajoy., 2018, The role of scientific evidence during the 2015 Nepal earthquake relief efforts