The rate of convergence of q-Bernstein polynomials for 0 < q < 1

被引:53
作者
Wang, HP [1 ]
Meng, FJ [1 ]
机构
[1] Capital Normal Univ, Dept Math, Beijing 100037, Peoples R China
基金
中国国家自然科学基金;
关键词
q-Bernstein polynomials; rate of approximation; modulus of continuity;
D O I
10.1016/j.jat.2005.07.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the note, we obtain the estimates for the rate of convergence for a sequence of q-Bernstein polynomials [B-n,B-q(f)} for 0 < q < 1 by the modulus of continuity off, and the estimates are sharp with respect to the order for Lipschitz continuous functions. We also get the exact orders of convergence for a family of functions f (x) = x(x), alpha > 0, alpha not equal 1, and the orders do not depend on a, unlike the classical case. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:151 / 158
页数:8
相关论文
共 9 条
[1]  
DeVore Ronald A., 1993, CONSTRUTIVE APPROXIM, V303
[2]   Convergence of generalized Bernstein polynomials [J].
Il'inskii, A ;
Ostrovska, S .
JOURNAL OF APPROXIMATION THEORY, 2002, 116 (01) :100-112
[3]  
Kac V., 2002, Quantum calculus
[4]  
Lorentz G. G., 1953, Mathematical Expositions, V8
[5]   q-Bernstein polynomials and their iterates [J].
Ostrovska, S .
JOURNAL OF APPROXIMATION THEORY, 2003, 123 (02) :232-255
[6]  
Phillips G. M., 1997, ANN NUMER MATH, V4, P511
[7]  
Phillips GM, 2003, CMS BOOKS MATH, V14
[8]  
Videnskii VS, 2005, OPER THEOR, V158, P213
[9]   Korovkin-type theorem and application [J].
Wang, HP .
JOURNAL OF APPROXIMATION THEORY, 2005, 132 (02) :258-264