Visible light responsive CuS/ protonated g-C3N4 heterostructure for rapid sterilization

被引:153
作者
Ding, Hongyan [1 ]
Han, Donglin [1 ]
Han, Yajing [1 ]
Liang, Yanqin [1 ]
Liu, Xiangmei [2 ]
Li, Zhaoyang [1 ]
Zhu, Shengli [1 ]
Wu, Shuilin [1 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Key Lab Adv Ceram & Machining Technol, Minist Educ China, Tianjin 300072, Peoples R China
[2] Hubei Univ, Sch Mat Sci & Engn, Hubei Key Lab Polymer Mat, Minist Educ,Key Lab Green Preparat & Applicat Fun, Wuhan 430062, Peoples R China
基金
中国国家自然科学基金;
关键词
Antibacterial; g-C3N4; CuS; Photocatalytic; Photothermal; GRAPHITIC CARBON NITRIDE; SILVER NANOPARTICLES; PHOTOCATALYTIC ACTIVITY; PHOTOTHERMAL ABLATION; RESISTANT-BACTERIA; MECHANISMS; NANOSHEETS; EFFICIENT; COMPOSITE; REMOVAL;
D O I
10.1016/j.jhazmat.2020.122423
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
As the environment deterioration is becoming more serious, bacterial pollution is threatening the health of human beings. Hence, it is vital to develop rapid and safe sterilization strategy. Herein, CuS/protonated g-C3N4 (CuS/PCN) composites were synthesized by simple hydrothermal method and electrostatic adsorption. This heterostructured system exhibited enhanced photocatalytic properties under visible light compared with CuS or g-C3N4 alone, ascribing to the rapid separation of photogenerated electron-hole pairs. Meanwhile, the obvious photothermal effects of CuS/PCN were achieved and the temperature increased with the increased amount of CuS in the composites due to the more light absorption. However, when the CuS content is more than 10 %, photocurrent density is decreased with increasing the amount of CuS, indicating the increased recombination of photogenerated electron-hole pairs. When the CuS content is 20 %, the composite can perform the optimized synergistic effects of both photothermal action and photocatalysis under light irradiation for 20 min. The corresponding bacteria-killing efficiency against Staphylococcus aureus and Escherichia coll. is 98.23 % and 99.16 %, respectively. The underlying mechanism is that the bacterial membrane can be weakened by reactive oxygen species and bacterial activities are inhibited by hyperthermia. This CuS/PCN heterojunction is promising for environmental disinfection including water and public facilities sterilization.
引用
收藏
页数:10
相关论文
共 52 条
[1]  
[Anonymous], 2006, M MDG DRINK WAT SAN
[2]   IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia [J].
Aujla, Shean J. ;
Chan, Yvonne R. ;
Zheng, Mingquan ;
Fei, Mingjian ;
Askew, David J. ;
Pociask, Derek A. ;
Reinhart, Todd A. ;
McAllister, Florencia ;
Edeal, Jennifer ;
Gaus, Kristi ;
Husain, Shahid ;
Kreindler, James L. ;
Dubin, Patricia J. ;
Pilewski, Joseph M. ;
Myerburg, Mike M. ;
Mason, Carol A. ;
Iwakura, Yoichiro ;
Kolls, Jay K. .
NATURE MEDICINE, 2008, 14 (03) :275-281
[3]   Crystal phase engineering on photocatalytic materials for energy and environmental applications [J].
Bai, Song ;
Gao, Chao ;
Low, Jingxiang ;
Xiong, Yujie .
NANO RESEARCH, 2019, 12 (09) :2031-2054
[4]   Defect engineering in photocatalytic materials [J].
Bai, Song ;
Zhang, Ning ;
Gao, Chao ;
Xiong, Yujie .
NANO ENERGY, 2018, 53 :296-336
[5]   Epidemiology, Diagnosis, and Antimicrobial Treatment of Acute Bacterial Meningitis [J].
Brouwer, Matthijs C. ;
Tunkel, Allan R. ;
van de Beek, Diederik .
CLINICAL MICROBIOLOGY REVIEWS, 2010, 23 (03) :467-+
[6]   Polymeric Photocatalysts Based on Graphitic Carbon Nitride [J].
Cao, Shaowen ;
Low, Jingxiang ;
Yu, Jiaguo ;
Jaroniec, Mietek .
ADVANCED MATERIALS, 2015, 27 (13) :2150-2176
[7]   Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3 [J].
Chen, Shifu ;
Hu, Yingfei ;
Meng, Sugang ;
Fu, Xianliang .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 150 :564-573
[8]   Single Continuous Near-Infrared Laser-Triggered Photodynamic and Photothermal Ablation of Antibiotic-Resistant Bacteria Using Effective Targeted Copper Sulfide Nanoclusters [J].
Dai, Xiaomei ;
Zhao, Yu ;
Yu, Yunjian ;
Chen, Xuelei ;
Wei, Xiaosong ;
Zhang, Xinge ;
Li, Chaoxing .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (36) :30470-30479
[9]   Bio-inspired crosslinking and matrix-drug interactions for advanced wound dressings with long-term antimicrobial activity [J].
Dhand, Chetna ;
Venkatesh, Mayandi ;
Barathi, Veluchami Amutha ;
Harini, Sriram ;
Bairagi, Samiran ;
Leng, Eunice Goh Tze ;
Muruganandham, Nandhakumar ;
Low, Kenny Zhi Wei ;
Fazil, Mobashar Hussain Urf Turabe ;
Loh, Xian Jun ;
Srinivasan, Dinesh Kumar ;
Liu, Shou Ping ;
Beuerman, Roger W. ;
Verma, Navin Kumar ;
Ramakrishna, Seeram ;
Lakshminarayanan, Rajamani .
BIOMATERIALS, 2017, 138 :153-168
[10]   Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity [J].
Duran, Nelson ;
Duran, Marcela ;
de Jesus, Marcelo Bispo ;
Seabra, Amedea B. ;
Favaro, Wagner J. ;
Nakazato, Gerson .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2016, 12 (03) :789-799