Logarithmic Sobolev inequalities for some nonlinear PDE's

被引:81
作者
Malrieu, F [1 ]
机构
[1] Univ Toulouse 3, Lab Stat & Probabil, UMR C5583, F-31064 Toulouse, France
关键词
interacting particle system; logarithmic Sobolev inequality; propagation of chaos; relative entropy; concentration of measure;
D O I
10.1016/S0304-4149(01)00095-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The aim of this paper is to study the behavior of solutions of some nonlinear partial differential equations of Mac Kean-Vlasov type. The main tools used are, on one hand, the logarithmic Sobolev inequality and its connections with the concentration of measure and the transportation inequality with quadratic cost; on the other hand, the propagation of chaos for particle systems in mean field interaction. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:109 / 132
页数:24
相关论文
共 18 条
[1]  
Bakry D, 1997, NEW TRENDS IN STOCHASTIC ANALYSIS, P43
[2]  
Bakry D., 1985, LECT NOTES MATH, V1123, P177, DOI DOI 10.1007/BFB0075847
[3]  
Bakry D., 1994, LECT NOTES MATH, V1581, P1, DOI 10.1007/BFb0073872
[4]   Increasing propagation of chaos for mean field models [J].
Ben Arous, G ;
Zeitouni, O .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1999, 35 (01) :85-102
[5]   Nonlinear self-stabilizing processes - II: Convergence to invariant probability [J].
Benachour, S ;
Roynette, B ;
Vallois, P .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1998, 75 (02) :203-224
[6]   Nonlinear self-stabilizing processes - I Existence, invariant probability, propagation of chaos [J].
Benachour, S ;
Roynette, B ;
Talay, D ;
Vallois, P .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1998, 75 (02) :173-201
[7]   A non-Maxwellian steady distribution for one-dimensional granular media [J].
Benedetto, D ;
Caglioti, E ;
Carrillo, JA ;
Pulvirenti, M .
JOURNAL OF STATISTICAL PHYSICS, 1998, 91 (5-6) :979-990
[8]  
BOBKOV S, 2001, IN PRESS MATH PURES
[9]  
CARRILLO J, 2001, KINETIC EQUILIBRATIO
[10]   SANOV PROPERTY, GENERALIZED I-PROJECTION AND A CONDITIONAL LIMIT-THEOREM [J].
CSISZAR, I .
ANNALS OF PROBABILITY, 1984, 12 (03) :768-793