Locating the source field lines of Jovian decametric radio emissions

被引:4
作者
Wang, YuMing [1 ,2 ,3 ]
Jia, XianZhe [4 ]
Wang, ChuanBing [1 ,2 ]
Wang, Shui [1 ,2 ]
Krupar, Vratislav [5 ,6 ,7 ]
机构
[1] Univ Sci & Technol China, Sch Earth & Space Sci, Key Lab Geospace Environm, Chinese Acad Sci, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Ctr Excellence Comparat Planetol, Chinese Acad Sci, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, Mengcheng Natl Geophys Observ, Sch Earth & Space Sci, Hefei 230026, Peoples R China
[4] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA
[5] Univ Space Res Assoc, Columbia, MD USA
[6] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
[7] Czech Acad Sci, Inst Atmospher Phys, Dept Space Phys, Prague, Czech Republic
关键词
radio decametric emissions; Jovian magnetosphere; energetic electrons; IO PLASMA TORUS; CURRENT SHEET; JUPITER; ELECTRON; BURSTS; MODEL;
D O I
10.26464/epp2020015
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Decametric (DAM) radio emissions are one of the main windows through which one can reveal and understand the Jovian magnetospheric dynamics and its interaction with the moons. DAMs are generated by energetic electrons through cyclotron-maser instability. For lo (the most active moon) related DAMs, the energetic electrons are sourced from lo volcanic activities, and quickly trapped by neighboring Jovian magnetic field. To properly interpret the physical processes behind DAMs, it is important to precisely locate the source field lines from which DAMs are emitted. Following the work by Hess et al. (2008, 2010), we develop a method to locate the source region as well as the associated field lines for any given DAM emission recorded in a radio dynamic spectrum by, e.g., Wind/WAVES or STEREO/WAVES. The field lines are calculated by the state-of-art analytical model, called JRM09 (Connerney et al., 2018). By using this method, we may also derive the emission cone angle and the energy of associated electrons. If multiple radio instruments at different perspectives observe the same DAM event, the evolution of its source region and associated field lines is able to be revealed. We apply the method to an lo-DAM event, and find that the method is valid and reliable. Some physical processes behind the DAM event are also discussed.
引用
收藏
页码:95 / 104
页数:10
相关论文
共 40 条
[1]   EMPIRICAL-MODEL OF THE IO PLASMA TORUS - VOYAGER MEASUREMENTS [J].
BAGENAL, F .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1994, 99 (A6) :11043-11062
[2]   The Juno Mission [J].
Bolton, S. J. ;
Lunine, J. ;
Stevenson, D. ;
Connerney, J. E. P. ;
Levin, S. ;
Owen, T. C. ;
Bagenal, F. ;
Gautier, D. ;
Ingersoll, A. P. ;
Orton, G. S. ;
Guillot, T. ;
Hubbard, W. ;
Bloxham, J. ;
Coradini, A. ;
Stephens, S. K. ;
Mokashi, P. ;
Thorne, R. ;
Thorpe, R. .
SPACE SCIENCE REVIEWS, 2017, 213 (1-4) :5-37
[3]   UV Io footprint leading spot: A key feature for understanding the UV Io footprint multiplicity? [J].
Bonfond, B. ;
Grodent, D. ;
Gerard, J. -C. ;
Radioti, A. ;
Saur, J. ;
Jacobsen, S. .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (05)
[4]  
Bonfond B., 2009, Journal of Geophysical Research, V114, DOI [DOI 10.1029/2009JA014312, 10.1029/2009JA014312]
[5]   S/WAVES: The radio and plasma wave investigation on the STEREO Mission [J].
Bougeret, J. L. ;
Goetz, K. ;
Kaiser, M. L. ;
Bale, S. D. ;
Kellogg, P. J. ;
Maksimovic, M. ;
Monge, N. ;
Monson, S. J. ;
Astier, P. L. ;
Davy, S. ;
Dekkali, M. ;
Hinze, J. J. ;
Manning, R. E. ;
Aguilar-Rodriguez, E. ;
Bonnin, X. ;
Briand, C. ;
Cairns, I. H. ;
Cattell, C. A. ;
Cecconi, B. ;
Eastwood, J. ;
Ergun, R. E. ;
Fainberg, J. ;
Hoang, S. ;
Huttunen, K. E. J. ;
Krucker, S. ;
Lecacheux, A. ;
MacDowall, R. J. ;
Macher, W. ;
Mangeney, A. ;
Meetre, C. A. ;
Moussas, X. ;
Nguyen, Q. N. ;
Oswald, T. H. ;
Pulupa, M. ;
Reiner, M. J. ;
Robinson, P. A. ;
Rucker, H. ;
Salem, C. ;
Santolik, O. ;
Silvis, J. M. ;
Ullrich, R. ;
Zarka, P. ;
Zouganelis, I. .
SPACE SCIENCE REVIEWS, 2008, 136 (1-4) :487-528
[6]   WAVES - THE RADIO AND PLASMA-WAVE INVESTIGATION ON THE WIND SPACECRAFT [J].
BOUGERET, JL ;
KAISER, ML ;
KELLOGG, PJ ;
MANNING, R ;
GOETZ, K ;
MONSON, SJ ;
MONGE, N ;
FRIEL, L ;
MEETRE, CA ;
PERCHE, C ;
SITRUK, L ;
HOANG, S .
SPACE SCIENCE REVIEWS, 1995, 71 (1-4) :231-263
[7]  
Carr T.D., 1983, PHYSICS JOVIAN MAGNE, P226, DOI DOI 10.1017/CBO9780511564574.009
[8]   A New Model of Jupiter's Magnetic Field From Juno's First Nine Orbits [J].
Connerney, J. E. P. ;
Kotsiaros, S. ;
Oliversen, R. J. ;
Espley, J. R. ;
Joergensen, J. L. ;
Joergensen, P. S. ;
Merayo, J. M. G. ;
Herceg, M. ;
Bloxham, J. ;
Moore, K. M. ;
Bolton, S. J. ;
Levin, S. M. .
GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (06) :2590-2596
[9]  
Connerney J. E. P., 1992, Planetary Radio Emissions, VIII, P13
[10]   MODELING THE JOVIAN CURRENT SHEET AND INNER MAGNETOSPHERE [J].
CONNERNEY, JEP ;
ACUNA, MH ;
NESS, NF .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1981, 86 (NA10) :8370-8384