Monotone Schwarz iterates for a semilinear parabolic convection-diffusion problem

被引:7
作者
Boglaev, I [1 ]
机构
[1] Massey Univ, Inst Fundamental Sci, Palmerston North, New Zealand
关键词
D O I
10.1016/j.cam.2005.01.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a discrete monotone iterative algorithm for solving a nonlinear singularly perturbed convection-diffusion problem of parabolic type. On each time level, the monotone method (known as the method of lower and upper solutions) is applied to computing a nonlinear upwind difference scheme obtained after discretisation of the continuous problem. A monotone domain decomposition algorithm based on a modification of the Schwarz alternating method is constructed. The rate of convergence of the monotone Schwarz method is estimated. Uniform convergence properties of the monotone domain decomposition algorithm are studied. Numerical experiments are presented. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:191 / 209
页数:19
相关论文
共 10 条
[1]  
[Anonymous], 1989, The Theory of Difference Schemes
[2]  
Boglaev I., 2004, Journal of Numerical Mathematics, V12, P169, DOI 10.1163/1569395041931455
[3]   Monotone iterative algorithms for a nonlinear singularly perturbed parabolic problem [J].
Boglaev, I .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 172 (02) :313-335
[4]   On monotone iterative methods for a nonlinear singularly perturbed reaction-diffusion problem [J].
Boglaev, I .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 162 (02) :445-466
[5]   A fractional step method on a special mesh for the resolution of multidimensional evolutionary convection-diffusion problems [J].
Clavero, C ;
Jorge, JC ;
Lisbona, F ;
Shishkin, GI .
APPLIED NUMERICAL MATHEMATICS, 1998, 27 (03) :211-231
[6]  
DAWSON CN, 1991, MATH COMPUT, V57, P63, DOI 10.1090/S0025-5718-1991-1079011-4
[7]   A parallel Schwarz method for a convection-diffusion problem [J].
Garbey, M ;
Kuznetsov, YA ;
Vassilevski, YV .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (03) :891-916
[8]  
Lady\vzhenskaja O. A., 1968, T MATH MONOGR, V23
[9]  
SAAD Y, 1986, SIAM J SCI STAT COMP, V7, P856, DOI 10.1137/0907058
[10]  
Shishkin G I., 1992, Discrete Approximation of Singularly Perturbed Elliptic and Parabolic Equations