Perovskite LaNiO3-δ oxide as an anion-intercalated pseudocapacitor electrode

被引:107
作者
Che, Wei [1 ,2 ]
Wei, Mingrui [1 ,2 ]
Sang, Zhongsheng [5 ]
Ou, Yangkang [1 ,2 ]
Liu, Yihui [1 ,2 ]
Liu, Jinping [3 ,4 ]
机构
[1] Wuhan Univ Technol, Hubei Key Lab Adv Technol Automot Components, Wuhan 430070, Hubei, Peoples R China
[2] Wuhan Univ Technol, Hubei Collaborat Innovat Ctr Automot Components T, Wuhan 430070, Hubei, Peoples R China
[3] Wuhan Univ Technol, Sch Chem Chem Engn & Life Sci, Wuhan 430070, Hubei, Peoples R China
[4] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Hubei, Peoples R China
[5] Wuhan Univ Technol, Sch Mat Sci & Engn, Wuhan 430070, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Perovskite LaNiO3; Pseudocapacitor; Anion-based intercalation; Oxygen vacancy; Cyclic stability; TRANSITION-METAL OXIDES/HYDROXIDES; ELECTROCHEMICAL ENERGY-STORAGE; FACILE SYNTHESIS; NICKEL-OXIDE; PERFORMANCE; CARBON; GRAPHENE; SUPERCAPACITORS; NANOTUBES; DIFFUSION;
D O I
10.1016/j.jallcom.2017.10.027
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Here, a novel anion-intercalated pseudocapacitive electrode, perovskite LaNiO3 oxide, was synthesized using sol-gel method and investigated systematically by measuring its CV and GCD curves in KOH electrolyte. XRD, SEM, HRTEM and XPS were employed to characterize the phase composition, microstructure and surface chemistry of LaNiO3 powders, respectively. Results show that LaNiO3 has excellent pseudocapacities with the specific capacitance of 478.7 F g(-1) at 0.1 mV s(-1), and a good cycling stability of reducing 5.5% charge-discharge efficiency after 15000 cycles. Oxygen intercalation and extrusion mechanism of the LaNiO3 electrode is also revealed that charge storage in this kind of perovskite pseudocapacitor electrode is associated with the intercalation of oxygen-ion into oxygen vacancies, which is mainly originated from the variation of different valence states of B site Ni in perovskite ABO(3) structure. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:381 / 388
页数:8
相关论文
共 56 条
[1]  
Andou Y., 2016, J MATER SCI-MATER EL, V28, P5425
[2]   INNER AND OUTER ACTIVE SURFACE OF RUO2 ELECTRODES [J].
ARDIZZONE, S ;
FREGONARA, G ;
TRASATTI, S .
ELECTROCHIMICA ACTA, 1990, 35 (01) :263-267
[3]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[4]   Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J].
Augustyn, Veronica ;
Simon, Patrice ;
Dunn, Bruce .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1597-1614
[5]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[6]   ESCA STUDY OF TERMINATION OF PASSIVATION OF ELEMENTAL METALS [J].
BARR, TL .
JOURNAL OF PHYSICAL CHEMISTRY, 1978, 82 (16) :1801-1810
[7]  
BOEHM HP, 1971, DISCUSS FARADAY SOC, P264
[8]   Next generation pseudocapacitor materials from sol-gel derived transition metal oxides [J].
Brezesinski, Torsten ;
Wang, John ;
Tolbert, Sarah H. ;
Dunn, Bruce .
JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2011, 57 (03) :330-335
[9]   Compositional Engineering of Perovskite Oxides for Highly Efficient Oxygen Reduction Reactions [J].
Chen, Dengjie ;
Chen, Chi ;
Zhang, Zhenbao ;
Baiyee, Zarah Medina ;
Ciucci, Francesco ;
Shao, Zongping .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (16) :8562-8571
[10]   Porous Active Carbon Layer Modified Graphene for High-performance Supercapacitor [J].
Chen, Zhendong ;
Liu, Kai ;
Liu, Sheng ;
Xia, Lu ;
Fu, Jijiang ;
Zhang, Xuming ;
Zhang, Chengcheng ;
Gao, Biao .
ELECTROCHIMICA ACTA, 2017, 237 :102-108