A fast time-difference inverse solver for 3D EIT with application to lung imaging

被引:11
作者
Javaherian, Ashkan [1 ]
Soleimani, Manuchehr [2 ]
Moeller, Knut [1 ]
机构
[1] Furtwangen Univ Appl Sci, Inst Tech Med, Fac Med & Life Sci, Villingen Schwenningen, Germany
[2] Univ Bath, Dept Elect Engn, ETL, Bath, Avon, England
关键词
Three-dimensional electrical impedance tomography; Sparse recovery; Gradient Projection for Sparse Reconstruction; Lung imaging; ELECTRICAL-IMPEDANCE TOMOGRAPHY; RECONSTRUCTION ALGORITHMS; SPARSE RECONSTRUCTION; REGULARIZATION; ENHANCEMENT; RECOVERY;
D O I
10.1007/s11517-015-1441-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A class of sparse optimization techniques that require solely matrix-vector products, rather than an explicit access to the forward matrix and its transpose, has been paid much attention in the recent decade for dealing with large-scale inverse problems. This study tailors application of the so-called Gradient Projection for Sparse Reconstruction (GPSR) to large-scale time-difference three-dimensional electrical impedance tomography (3D EIT). 3D EIT typically suffers from the need for a large number of voxels to cover the whole domain, so its application to real-time imaging, for example monitoring of lung function, remains scarce since the large number of degrees of freedom of the problem extremely increases storage space and reconstruction time. This study shows the great potential of the GPSR for large-size time-difference 3D EIT. Further studies are needed to improve its accuracy for imaging small-size anomalies.
引用
收藏
页码:1243 / 1255
页数:13
相关论文
共 54 条
[1]   Electrical impedance tomography: Regularized imaging and contrast detection [J].
Adler, A ;
Guardo, R .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1996, 15 (02) :170-179
[2]   Whither lung EIT: Where are we, where do we want to go and what do we need to get there? [J].
Adler, Andy ;
Amato, Marcelo B. ;
Arnold, John H. ;
Bayford, Richard ;
Bodenstein, Marc ;
Boehm, Stephan H. ;
Brown, Brian H. ;
Frerichs, Inez ;
Stenqvist, Ola ;
Weiler, Norbert ;
Wolf, Gerhard K. .
PHYSIOLOGICAL MEASUREMENT, 2012, 33 (05) :679-694
[3]   GREIT: a unified approach to 2D linear EIT reconstruction of lung images [J].
Adler, Andy ;
Arnold, John H. ;
Bayford, Richard ;
Borsic, Andrea ;
Brown, Brian ;
Dixon, Paul ;
Faes, Theo J. C. ;
Frerichs, Inez ;
Gagnon, Herve ;
Gaerber, Yvo ;
Grychtol, Bartlomiej ;
Hahn, Guenter ;
Lionheart, William R. B. ;
Malik, Anjum ;
Patterson, Robert P. ;
Stocks, Janet ;
Tizzard, Andrew ;
Weiler, Norbert ;
Wolf, Gerhard K. .
PHYSIOLOGICAL MEASUREMENT, 2009, 30 (06) :S35-S55
[4]  
[Anonymous], 1999, Athena scientific Belmont
[5]  
[Anonymous], TR0707 RIC U DEP COM
[6]   Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method [J].
Bagshaw, AP ;
Liston, AD ;
Bayford, RH ;
Tizzard, A ;
Gibson, AP ;
Tidswell, AT ;
Sparkes, MK ;
Dehghani, H ;
Binnie, CD ;
Holder, DS .
NEUROIMAGE, 2003, 20 (02) :752-764
[7]   Errors in reconstruction of resistivity images using a linear reconstruction technique [J].
Barber, D.C. ;
Brown, B.H. .
Clinical Physics and Physiological Measurement, 1988, 9 (SUPPL. A) :101-104
[8]   2-POINT STEP SIZE GRADIENT METHODS [J].
BARZILAI, J ;
BORWEIN, JM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (01) :141-148
[9]   A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration [J].
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (12) :2992-3004
[10]   Real-time three-dimensional electrical impedance imaging [J].
Blue, RS ;
Isaacson, D ;
Newell, JC .
PHYSIOLOGICAL MEASUREMENT, 2000, 21 (01) :15-26