TOEPLITZ OPERATORS WITH BMO SYMBOLS ON THE SEGAL-BARGMANN SPACE

被引:39
作者
Coburn, L. A. [1 ]
Isralowitz, J. [1 ]
Li, Bo [1 ]
机构
[1] SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
关键词
COMPACT-OPERATORS; TRANSFORM;
D O I
10.1090/S0002-9947-2011-05278-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that Zorboska's criterion for compactness of Toeplitz operators with BMO1 symbols on the Bergman space of the unit disc holds, by a different proof, for the Segal-Bargmann space of Gaussian square-integrable entire functions on C-n. We establish some basic properties of BMOp for p >= 1 and complete the characterization of bounded and compact Toeplitz operators with BMO1 symbols. Via the Bargmann isometry and results of Lo and Englis, we also give a compactness criterion for the Gabor-Daubechies "windowed Fourier localization operators" on L-2(R-n, dv) when the symbol is in a BMO1 Sobolev-type space. Finally, we discuss examples of the compactness criterion and counterexamples to the unrestricted application of this criterion for the compactness of Toeplitz operators.
引用
收藏
页码:3015 / 3030
页数:16
相关论文
共 22 条
[1]  
[Anonymous], 2003, SOBOLEV SPACES
[2]  
[Anonymous], 1989, ANN MATH STUDIES
[3]  
Axler S, 1998, INDIANA U MATH J, V47, P387
[5]   Mean oscillation and Hankel operators on the Segal-Bargmann space [J].
Bauer, V .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 52 (01) :1-15
[6]   Compact operators and the pluriharmonic Berezin transform [J].
Bauer, Wolfram ;
Furutani, Kenro .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2008, 19 (06) :645-669
[7]   BMO IN THE BERGMAN METRIC ON BOUNDED SYMMETRICAL DOMAINS [J].
BEKOLLE, D ;
BERGER, CA ;
COBURN, LA ;
ZHU, KH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 93 (02) :310-350
[8]  
Berezin F.A., 1971, Mat. Sb. (N.S.), V86, P578, DOI 10.1070/SM1971v015n04ABEH001564
[9]  
Berezin FA., 1972, MATH USSR IZV, V6, P1117, DOI 10.1070/IM1972v006n05ABEH001913
[10]   HEAT-FLOW AND BEREZIN-TOEPLITZ ESTIMATES [J].
BERGER, CA ;
COBURN, LA .
AMERICAN JOURNAL OF MATHEMATICS, 1994, 116 (03) :563-590