On the speed of a cookie random walk

被引:41
作者
Basdevant, Anne-Laure [1 ]
Singh, Arvind [1 ]
机构
[1] Univ Paris 06, Lab Probabil & Aleatoires, F-75013 Paris, France
关键词
law of large numbers; cookie or multi-excited random walk; branching process with migration;
D O I
10.1007/s00440-007-0096-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the model of the one-dimensional cookie random walk when the initial cookie distribution is spatially uniform and the number of cookies per site is finite. We give a criterion to decide whether the limiting speed of the walk is non-zero. In particular, we show that a positive speed may be obtained for just three cookies per site. We also prove a result on the continuity of the speed with respect to the initial cookie distribution.
引用
收藏
页码:625 / 645
页数:21
相关论文
共 14 条
[1]   The excited random walk in one dimension [J].
Antal, T ;
Redner, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (12) :2555-2577
[2]  
BASDEVANT AL, 2007, RATE GROWTH TRANSIEN
[3]   EXCITED RANDOM WALK [J].
Benjamini, Itai ;
Wilson, David B. .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2003, 8 :86-92
[4]   Brownian motion and random walk perturbed at extrema [J].
Davis, B .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 113 (04) :501-518
[5]  
Feller W., 1991, An Introduction to Probability Theory and Its Applications, VII
[6]  
KESTEN H, 1975, COMPOS MATH, V30, P145
[7]  
Kozma G., 2005, EXCITED RANDOM WALK
[8]  
Kozma G., 2003, EXCITED RANDOM WALK
[9]  
Mountford T., 2006, ALEA-LAT AM J PROBAB, V2, P279
[10]  
Norris J. R., 1998, CAMBRIDGE SERIES STA