Stable standing waves for a class of nonlinear Schrodinger-Poisson equations

被引:69
作者
Bellazzini, Jacopo [1 ]
Siciliano, Gaetano [2 ]
机构
[1] Univ Pisa, Dipartimento Matemat Applicata U Dini, I-56127 Pisa, Italy
[2] Univ Sao Paulo, Inst Matemat & Estat, BR-05508090 Sao Paulo, Brazil
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2011年 / 62卷 / 02期
基金
巴西圣保罗研究基金会;
关键词
Schrodinger-Poisson equations; Standing waves; Orbital stability; CONCENTRATION-COMPACTNESS PRINCIPLE; ORBITAL STABILITY; SOLITARY WAVES; MAXWELL; EXISTENCE; CALCULUS; SYSTEM;
D O I
10.1007/s00033-010-0092-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of orbitally stable standing waves with prescribed L (2)-norm for the following Schrodinger-Poisson type equation our approach recovers the result of Sanchez and Soler (J Stat Phys 114:179-204, 2004) for sufficiently small charges. The main point is the analysis of the compactness of minimizing sequences for the related constrained minimization problem. In the final section, a further application to the Schrodinger equation involving the biharmonic operator is given.
引用
收藏
页码:267 / 280
页数:14
相关论文
共 22 条
[1]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[2]  
Bellazzini J., P ROY SOC E IN PRESS
[3]   On the Orbital Stability for a Class of Nonautonomous NLS [J].
Bellazzini, Jacopo ;
Visciglia, Nicola .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2010, 59 (03) :1211-1230
[4]  
Benci V., 1998, TOPOL METHOD NONL AN, V11, P283
[5]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[6]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[7]  
Cazenave T., LECT NOTES MATH, V10
[8]   Stability of standing waves for nonlinear defocusing fourth-order dispersive Schrodinger equation with unbounded potentials [J].
Chen, Guanggan ;
Zhang, Jian ;
Wei, Yunyun .
MATHEMATISCHE NACHRICHTEN, 2008, 281 (04) :517-524
[9]  
Coclite G.M., 2003, Commun. Appl. Anal, V7, P417
[10]   Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equations [J].
D'Aprile, T ;
Mugnai, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 :893-906