Morse flow trees and Legendrian contact homology in 1-jet spaces

被引:43
作者
Ekholm, Tobias [1 ]
机构
[1] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
关键词
D O I
10.2140/gt.2007.11.1083
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L subset of J(1)(M) be a Legendrian submanifold of the 1-jet space of a Riemannian n-manifold M. A correspondence is established between rigid flow trees in M determined by L and boundary punctured rigid pseudo-holomorphic disks in T * M, with boundary on the projection of L and asymptotic to the double points of this projection at punctures, provided n <= 2, or provided n > 2 and the front of L has only cusp edge singularities. This result, in particular, shows how to compute the Legendrian contact homology of L in terms of Morse theory.
引用
收藏
页码:1083 / 1224
页数:142
相关论文
共 20 条
[1]   Differential algebra of Legendrian links [J].
Chekanov, Y .
INVENTIONES MATHEMATICAE, 2002, 150 (03) :441-483
[2]  
Ekholm T, 2005, J DIFFER GEOM, V71, P177
[3]  
Ekholm T, 2005, J DIFFER GEOM, V71, P85
[4]   Orientations in Legendrian contact homology and exact Lagrangian immersions [J].
Ekholm, T ;
Etnyre, J ;
Sullivan, M .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2005, 16 (05) :453-532
[5]  
EKHOLM T, UNPUB CONTACT HOMOLO
[6]  
EKHOLM T, IN PRESS T AM MATH S
[7]  
Eliashberg Y, 2000, GEOM FUNCT ANAL, P560
[8]  
Eliashberg Yakov, 1998, P INT C MATHEMATICIA, V2, P327
[9]   Surgery on Lagrangian and Legendrian singularities [J].
Entov, M .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (02) :298-352
[10]  
Etnyre J., 2002, J SYMPLECT GEOM, V1, P321