An ONIOM and DFT Study of Water and Ammonia Adsorption on Anatase TiO2 (001) Cluster

被引:16
作者
Erdogan, Rezan [1 ]
Onal, Isik [1 ]
机构
[1] Middle E Tech Univ, Dept Chem Engn, TR-06531 Ankara, Turkey
关键词
DFT; ONIOM; anatase; water; ammonia adsorption; SELECTIVE CATALYTIC-REDUCTION; VANADIA-TITANIA CATALYSTS; MECHANISTIC ASPECTS; NITRIC-OXIDE; SURFACE; OXIDATION; EXCHANGE; SCR; NOX; ACTIVATION;
D O I
10.1002/qua.22501
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Density functional theory (DFT) calculations at ONIOM DFT B3LYP/6-31G**-MD/UFF level are employed to study molecular and dissociative water and ammonia adsorption on anatase TiO2 (001) surface represented by partially relaxed Ti20O35 ONIOM cluster. DFT calculations indicate that water molecule is dissociated on anatase TiO2 (001) surface by a nonactivated process with an exothermic relative energy difference of 58.12 kcal/mol. Dissociation of ammonia molecule on the same surface is energetically more favorable than molecular adsorption of ammonia (-37.17 kcal/mol vs. -23.28 kcal/mol). The vibration frequency values also are computed for the optimized geometries of adsorbed water and ammonia molecules on anatase TiO2 (001) surface. The computed adsorption energy and vibration frequency values are comparable with the values reported in the literature. Finally, several thermodynamical properties (Delta H degrees, Delta S degrees, and Delta G degrees) are calculated for temperatures corresponding to the experimental studies. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 111: 2149-2159, 2011
引用
收藏
页码:2149 / 2159
页数:11
相关论文
共 43 条
[1]   An FT-IR study of ammonia adsorption and oxidation over anatase-supported metal oxides [J].
Amores, JMG ;
Escribano, VS ;
Ramis, G ;
Busca, G .
APPLIED CATALYSIS B-ENVIRONMENTAL, 1997, 13 (01) :45-58
[2]  
[Anonymous], 2001, COMPUTATIONAL CHEM P
[3]   Effects of morphology on surface hydroxyl concentration:: a DFT comparison of anatase-TiO2 and γ-alumina catalytic supports [J].
Arrouvel, C ;
Digne, M ;
Breysse, M ;
Toulhoat, H ;
Raybaud, P .
JOURNAL OF CATALYSIS, 2004, 222 (01) :152-166
[4]   Modeling the morphology and phase stability of TiO2 nanocrystals in water [J].
Barnard, AS ;
Zapol, P ;
Curtiss, LA .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2005, 1 (01) :107-116
[5]   EXCHANGE HOLES IN INHOMOGENEOUS SYSTEMS - A COORDINATE-SPACE MODEL [J].
BECKE, AD ;
ROUSSEL, MR .
PHYSICAL REVIEW A, 1989, 39 (08) :3761-3767
[6]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[7]   THEORETICAL INVESTIGATION OF WATER-ADSORPTION AT RUTILE AND ANATASE SURFACES [J].
BREDOW, T ;
JUG, K .
SURFACE SCIENCE, 1995, 327 (03) :398-408
[8]   Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts:: A review [J].
Busca, G ;
Lietti, L ;
Ramis, G ;
Berti, F .
APPLIED CATALYSIS B-ENVIRONMENTAL, 1998, 18 (1-2) :1-36
[9]   Modeling catalytic reduction of NO by ammonia over V2O5 [J].
Calatayud, M ;
Mguig, B ;
Minot, C .
SURFACE SCIENCE REPORTS, 2004, 55 (6-8) :169-236
[10]   The surface science of titanium dioxide [J].
Diebold, U .
SURFACE SCIENCE REPORTS, 2003, 48 (5-8) :53-229