A coarse space for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann operator (vol 271, pg 83, 2014)

被引:0
作者
Conen, Lea [1 ]
Dolean, Victorita [2 ]
Krause, Rolf [1 ]
Nataf, Frederic [3 ,4 ]
机构
[1] Univ Svizzera Italiana, Inst Computat Sci, CH-6900 Lugano, Switzerland
[2] Univ Strathclyde, Dept Math & Stat, Glasgow G1 1XH, Lanark, Scotland
[3] Univ Paris 06, Lab JL Lions, CNRS, F-75005 Paris, France
[4] INRIA Alpines Team, F-75005 Paris, France
关键词
Helmholtz equation; Domain decomposition; Coarse space; Dirichlet-to-Neumann operator;
D O I
10.1016/j.cam.2015.04.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This communication gives an addendum to the paper Conen et al. (2014).
引用
收藏
页码:670 / 674
页数:5
相关论文
共 3 条
  • [1] A coarse space for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann operator
    Conen, Lea
    Dolean, Victorita
    Krause, Rolf
    Nataf, Frederic
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 271 : 83 - 99
  • [2] DEFLATION AND BALANCING PRECONDITIONERS FOR KRYLOV SUBSPACE METHODS APPLIED TO NONSYMMETRIC MATRICES
    Erlangga, Yogi A.
    Nabben, Reinhard
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (02) : 684 - 699
  • [3] ALGEBRAIC DOMAIN DECOMPOSITION METHODS FOR HIGHLY HETEROGENEOUS PROBLEMS
    Have, Pascal
    Masson, Roland
    Nataf, Frederic
    Szydlarski, Mikolaj
    Xiang, Hua
    Zhao, Tao
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (03) : C284 - C302