3D-Printed Hierarchical Porous Frameworks for Sodium Storage

被引:83
作者
Ding, Junwei [1 ]
Shen, Kai [1 ]
Du, Zhiguo [1 ]
Li, Bin [1 ]
Yang, Shubin [1 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Aerosp Adv Mat & Performance, Beijing 100191, Peoples R China
基金
美国国家科学基金会;
关键词
3D printing; frameworks; sodium-ion batteries; cathode; anode; LITHIUM-ION BATTERIES; CARBON-COATED NA3V2(PO4)(3); ELECTRODE MATERIAL; GRAPHENE; PERFORMANCE; CATHODE; NANOCOMPOSITES; DIMENSIONS; COMPOSITE; ENERGY;
D O I
10.1021/acsami.7b12892
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Exploring 3D printing in the field of sodium-ion batteries is a great challenge since conventionally inks cause unavoidably compact filaments or frameworks, which significantly hamper the infiltration of electrolyte and diffusion of big-size sodium ions (1.02 angstrom), resulting in low reversible capacities. Here, new hierarchical porous frameworks are 3D printed for sodium storage by employing well-designed GO-contained inks. The resultant frameworks possess continuous filaments, hierarchical multihole gridding. Such distinct properties render these frameworks able to facilitate the fast transportation of both sodium ion and electron. As a result, 3D-printed hierarchical porous frameworks reveal the high specific capacity as well as rate performance and periodic steadiness for up to 900 cycles for sodium storage.
引用
收藏
页码:41871 / 41877
页数:7
相关论文
共 39 条
[1]   3D-printing technologies for electrochemical applications [J].
Ambrosi, Adriano ;
Pumera, Martin .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (10) :2740-2755
[2]   3D Printable Ceramic-Polymer Electrolytes for Flexible High-Performance Li-Ion Batteries with Enhanced Thermal Stability [J].
Blake, Aaron J. ;
Kohlmeyer, Ryan R. ;
Hardin, James O. ;
Carmona, Eric A. ;
Maruyama, Benji ;
Berrigan, John Daniel ;
Huang, Hong ;
Durstock, Michael F. .
ADVANCED ENERGY MATERIALS, 2017, 7 (14)
[3]   Printing and Prototyping of Tissues and Scaffolds [J].
Derby, Brian .
SCIENCE, 2012, 338 (6109) :921-926
[4]   Na3V2(PO4)3 as cathode material for hybrid lithium ion batteries [J].
Du, Ke ;
Guo, Hongwei ;
Hu, Guorong ;
Peng, Zhongdong ;
Cao, Yanbing .
JOURNAL OF POWER SOURCES, 2013, 223 :284-288
[5]   Na3V2(PO4)3@C core-shell nanocomposites for rechargeable sodium-ion batteries [J].
Duan, Wenchao ;
Zhu, Zhiqiang ;
Li, Hao ;
Hu, Zhe ;
Zhang, Kai ;
Cheng, Fangyi ;
Chen, Jun .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (23) :8668-8675
[6]   Three-Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications [J].
Farahani, Rouhollah D. ;
Dube, Martine ;
Therriault, Daniel .
ADVANCED MATERIALS, 2016, 28 (28) :5794-5821
[7]   Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries [J].
Fu, Kun ;
Wang, Yibo ;
Yan, Chaoyi ;
Yao, Yonggang ;
Chen, Yanan ;
Dai, Jiaqi ;
Lacey, Steven ;
Wang, Yanbin ;
Wan, Jiayu ;
Li, Tian ;
Wang, Zhengyang ;
Xu, Yue ;
Hu, Liangbing .
ADVANCED MATERIALS, 2016, 28 (13) :2587-+
[8]   Printing in Three Dimensions with Graphene [J].
Garcia-Tunon, Esther ;
Barg, Suelen ;
Franco, Jaime ;
Bell, Robert ;
Eslava, Salvador ;
D'Elia, Eleonora ;
Maher, Robert Christopher ;
Guitian, Francisco ;
Saiz, Eduardo .
ADVANCED MATERIALS, 2015, 27 (10) :1688-+
[9]   Microfluidic Printheads for Multimaterial 3D Printing of Viscoelastic Inks [J].
Hardin, James O. ;
Ober, Thomas J. ;
Valentine, Alexander D. ;
Lewis, Jennifer A. .
ADVANCED MATERIALS, 2015, 27 (21) :3279-3284
[10]   Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room-Temperature Sodium-Ion Batteries [J].
Jian, Zelang ;
Han, Wenze ;
Lu, Xia ;
Yang, Huaixin ;
Hu, Yong-Sheng ;
Zhou, Jing ;
Zhou, Zhibin ;
Li, Jianqi ;
Chen, Wen ;
Chen, Dongfeng ;
Chen, Liquan .
ADVANCED ENERGY MATERIALS, 2013, 3 (02) :156-160