Universal scaling law of inertance tube phase shifter

被引:0
作者
Zhu, S. L. [1 ]
Luo, E. C. [1 ]
Wu, Z. H. [1 ]
Dai, W. [1 ]
机构
[1] Chinese Acad Sci, Tech Inst Phys & Chem, Beijing 100080, Peoples R China
来源
ADVANCES IN CRYOGENIC ENGINEERING, VOLS 53A AND 53B | 2008年 / 985卷
关键词
pulse tube cooler; phase shifters; inertance tube; turbulent flow model;
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
An inertance tube is a long thin tube that is now frequently used as the phase shifter for a pulse tube cryocooler. Developing a scaling law suitable for the inertance tube shifter is the objective of this work. Different pulse tube coolers need different inertance tube phase shifters which can be characterized by their acoustical power transmission and phase shifting capabilities. In other words, the acoustical power at the inlet of inertance tube reflects the gross cooling capacity of pulse tube cryocooler and the phase angle at its inlet that required by pulse tube cryocooler for efficient operation. To obtain the universal operating behavior of inertance phase shifter, a series of dimensionless groups are needed, including dimensionless diameter, dimensionless length of inertance tube, and dimensionless acoustical power. Two limiting cases of inertance tube phase shifter configurations, infinitely large reservoir volume and zero reservoir volume are highlighted in modeling. Oscillating turbulent flow is incorporated, which makes universal scaling law describe the practical operating behavior of real inertance tube shifters. Charts are provided to quickly choose an optimal inertance tube phase shifter.
引用
收藏
页码:1075 / 1082
页数:8
相关论文
共 50 条
[31]   The Multiple Circular Sectors Structures for Phase Shifter Designs [J].
Yeung, Sai Ho ;
Man, Kim Fung ;
Chan, Wing Shing .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2011, 59 (02) :278-285
[32]   LIQUID-CRYSTAL MICROWAVE PHASE-SHIFTER [J].
DOLFI, D ;
LABEYRIE, M ;
JOFFRE, P ;
HUIGNARD, JP .
ELECTRONICS LETTERS, 1993, 29 (10) :926-928
[33]   Soliton-guided phase shifter and beam splitter [J].
Steiglitz, Ken .
PHYSICAL REVIEW A, 2010, 81 (03)
[34]   A 90-GHz waveguide variable phase shifter [J].
Pisano, Giampaolo ;
Savini, Giorgio ;
Pietranera, Luca ;
Isaak, Kate ;
Johnson, Bradley ;
Gervasi, Massimo ;
Piccirillo, Lucio ;
Maffei, Bruno ;
Melhuish, Simon .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2007, 17 (03) :208-210
[35]   A Phase Shifter with One Tunable Component for a Reflectarray Antenna [J].
Vendik, O. G. ;
Parnes, M. .
IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2008, 50 (04) :53-+
[36]   A Continuously Tunable Phase Shifter Using Surface Waves [J].
Ohadi, Amirmasoud ;
Eleftheriades, George V. .
IEEE JOURNAL OF MICROWAVES, 2021, 1 (04) :989-996
[37]   Reflecting polarization phase shifter for the millimetre wave range [J].
Martynyuk, A.E. ;
Sidoruk, Yu.K. .
Izvestiya VUZ: Radioelektronika, 1993, 36 (02) :45-54
[38]   An Integrated Compact Phase Shifter With a Single Analog Control [J].
Akbar, Fatemeh ;
Mortazawi, Amir .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2022, 32 (05) :410-413
[39]   Thick film fabrication of ferroelectric phase shifter materials [J].
Sengupta, LC ;
Stowell, S ;
Ngo, E ;
Sengupta, S .
INTEGRATED FERROELECTRICS, 1996, 13 (04) :203-214
[40]   Linear reflection phase shifter with optimised varactor gamma [J].
Klymyshyn, DM ;
Kumar, S ;
Mohammadi, A .
ELECTRONICS LETTERS, 1997, 33 (12) :1054-1055