FPGA Design of an Automatic Target Generation Process for Hyperspectral Image Analysis

被引:25
作者
Bernabe, Sergio [1 ]
Lopez, Sebastian [2 ]
Plaza, Antonio [1 ]
Sarmiento, Roberto [2 ]
Garcia Rodriguez, Pablo [3 ]
机构
[1] Univ Extremadura, Dept Technol Comp & Commun, Hyperspectral Comp Lab, Avda Univ S-N, E-10003 Caceres, Spain
[2] Univ Las Palmas Gran Canaria, Inst Appl Microelect IUMA, E-35017 Las Palmas Gran Canaria, Spain
[3] Univ Extremadura, GIM, E-10003 Badajoz, Spain
来源
2011 IEEE 17TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS) | 2011年
关键词
Hyperspectral image analysis; target detection; field programmable gate arrays (FPGAs);
D O I
10.1109/ICPADS.2011.64
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Onboard processing of remotely sensed hyperspectral data is a highly desirable goal in many applications. For this purpose, compact reconfigurable hardware modules such as field programmable gate arrays (FPGAs) are widely used. In this paper, we develop a new implementation of an automatic target generation process (ATGP) for hyperspectral images. Our implementation is based on a design methodology that starts from a high-level description in Matlab (or alternative C/C++) and obtains a register transfer level (RTL) description that can be ported to FPGAs. In order to validate our new implementation, we develop a quantitative and comparative study using two different FPGA architectures: Xilinx Virtex-5 and Altera Stratix-III Altera. Experimental results have been obtained in the context of a real application focused on the detection of mineral components over the Cuprite mining district (Nevada), using hyperspectral data collected by NASA's Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS). Our experimental results indicate that the proposed implementation can achieve peak frequency designs above 200MHz in the considered FPGAs, in addition to satisfactory results in terms of target detection accuracy and parallel performance. This represents a step forward towards the design of real-time onboard implementations of hyperspectral image analysis algorithms.
引用
收藏
页码:1010 / 1015
页数:6
相关论文
共 13 条
[1]  
Chang C.I., 2003, Hyperspectral Imaging: Techniques for Spectral Detection and Classification, V1
[2]   Reconfigurable computing: A survey of systems and software [J].
Compton, K ;
Hauck, S .
ACM COMPUTING SURVEYS, 2002, 34 (02) :171-210
[3]   IMAGING SPECTROMETRY FOR EARTH REMOTE-SENSING [J].
GOETZ, AFH ;
VANE, G ;
SOLOMON, JE ;
ROCK, BN .
SCIENCE, 1985, 228 (4704) :1147-1153
[4]   FPGA Implementation of the Pixel Purity Index Algorithm for Remotely Sensed Hyperspectral Image Analysis [J].
Gonzalez, Carlos ;
Resano, Javier ;
Mozos, Daniel ;
Plaza, Antonio ;
Valencia, David .
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2010, :1-13
[5]   Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) [J].
Green, RO ;
Eastwood, ML ;
Sarture, CM ;
Chrien, TG ;
Aronsson, M ;
Chippendale, BJ ;
Faust, JA ;
Pavri, BE ;
Chovit, CJ ;
Solis, MS ;
Olah, MR ;
Williams, O .
REMOTE SENSING OF ENVIRONMENT, 1998, 65 (03) :227-248
[6]   FIELD PROGRAMMABLE GATE ARRAYS (FPGA) FOR PIXEL PURITY INDEX USING BLOCKS OF SKEWERS FOR ENDMEMBER EXTRACTION IN HYPERSPECTRAL IMAGERY [J].
Hsueh, Mingkai ;
Chang, Chein-I .
INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2008, 22 (04) :408-423
[7]  
Lysaght P., 2006, P INT C FIELD PROGRA, P1
[8]   Clusters versus GPUs for Parallel Target and Anomaly Detection in Hyperspectral Images [J].
Paz, Abel ;
Plaza, Antonio .
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2010,
[9]  
Plaza AJ, 2008, CH CRC COMP INFO SCI, P1
[10]   CLUSTERS VERSUS FPGA FOR PARALLEL PROCESSING OF HYPERSPECTRAL IMAGERY [J].
Plaza, Antonio ;
Chang, Chein-I .
INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2008, 22 (04) :366-385