Fredholm modules for quantum Euclidean spheres

被引:17
作者
Hawkins, E
Landi, G
机构
[1] Univ Trieste, Dipartimento Sci Matemat, I-34127 Trieste, Italy
[2] Scuola Int Super Studi Avanzati, I-34014 Trieste, Italy
[3] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy
关键词
Fredholm modules; quantum Euclidean spheres;
D O I
10.1016/S0393-0440(03)00092-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The quantum Euclidean spheres, S-q(N-1), are (noncommutative) homogeneous spaces of quantum orthogonal groups, SOq(N). The *-algebra A(S-q(N-1)) of polynomial functions on each of these is given by generators and relations which can be expressed in terms of a self-adjoint, umpotent matrix. We explicitly construct complete sets of generators for the K-theory (by nontrivial self-adjoint idempotents and unitaries) and the K-homology (by nontrivial Fredholm modules) of the spheres S-q(N-1). We also construct the corresponding Chem characters in cyclic homology and cohomology and compute the pairing of K-theory with K-homology. On odd spheres (i.e., for N even) we exhibit unbounded Fredholm modules by means of a natural unbounded operator D which, while failing to have compact resolvent, has bounded commutators with all elements in the algebra A (S-q(N-1)) (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:272 / 293
页数:22
相关论文
共 21 条
[1]   Geometrical tools for quantum Euclidean spaces [J].
Cerchiai, BL ;
Fiore, G ;
Madore, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 217 (03) :521-554
[2]  
CHAKRABORTY PS, EQUIVARIANT SPECTRAL
[3]  
CHAKRABORTY PS, SPECTRAL TRIPLES ASS
[4]   THE LOCAL INDEX FORMULA IN NONCOMMUTATIVE GEOMETRY [J].
CONNES, A ;
MOSCOVICI, H .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1995, 5 (02) :174-243
[5]  
CONNES A, CYCLIC COHOMOLOGY QU
[6]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[7]  
CUNTZ J, 1984, OPERATOR ALGEBRAS GR, P124
[8]  
Davidson K.R., 1996, C ALGEBRAS EXAMPLE
[9]  
Faddeev L D., 1990, LENINGRAD MATH J, V1, P193
[10]   THE EUCLIDEAN-HOPF ALGEBRA U-Q(E(N)) AND ITS FUNDAMENTAL HILBERT-SPACE REPRESENTATIONS [J].
FIORE, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (08) :4363-4405