On the Regularity of Weak Solutions of the Boussinesq Equations in Besov Spaces

被引:12
作者
Barbagallo, Annamaria [1 ]
Gala, Sadek [2 ]
Ragusa, Maria Alessandra [3 ,4 ]
Thera, Michel [5 ,6 ]
机构
[1] Univ Naples Federico II, Dept Math & Applicat R Caccioppoli, Via Cintia, I-80126 Naples, Italy
[2] Ecole Normale Super Mostaganem, Dept Sci Exactes, Box 227, Mostaganem 27000, Algeria
[3] Univ Catania, Dipartimento Matemat & Informat, Viale Andrea Doria 6, I-95125 Catania, Italy
[4] RUDN Univ, 6 Miklukho,Maklay St, Moscow 117198, Russia
[5] Univ Limoges, XLIM UMR CNRS 7252, Limoges, France
[6] Federat Univ Australia, Ctr Informat & Appl Optimisat, Ballarat, Vic, Australia
基金
澳大利亚研究理事会;
关键词
Boussinesq equations; Besov space; Weak solution; Regularity criterion; BLOW-UP CRITERION; SMOOTH SOLUTIONS; LOCAL EXISTENCE; SYSTEM; INEQUALITIES;
D O I
10.1007/s10013-020-00420-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main issue addressed in this paper concerns an extension of a result by Z. Zhang who proved, in the context of the homogeneous Besov space (B) over dot(infinity,infinity)(-1), that, if the solution of the Boussinesq equation (1) below (starting with an initial data in H-2) is such that (del(u), del theta) is an element of L-2 (0, T; (B) over dot(infinity,infinity)(-1) (R-3)) then the solution remains smooth forever after T. In this contribution, we prove the same result for weak solutions just by assuming the condition on the velocity u and not on the temperature theta.
引用
收藏
页码:637 / 649
页数:13
相关论文
共 30 条
[1]   On the global well-posedness for Boussinesq system [J].
Abidi, H. ;
Hmidi, T. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 233 (01) :199-220
[2]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[3]  
Cannon J. R., 1980, LECT NOTES MATH, V771, P129
[4]   Local existence and blow-up criterion of Holder continuous solutions of the Boussinesq equations [J].
Chae, D ;
Kim, SK ;
Nam, HS .
NAGOYA MATHEMATICAL JOURNAL, 1999, 155 :55-80
[5]   Local existence and blow-up criterion for the Boussinesq equations [J].
Chae, D ;
Nam, HS .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 :935-946
[6]  
Chemin J.-Y., 1998, OXFORD LECT SERIES M, V14
[7]   Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces [J].
Danchin, Raphael ;
Paicu, Marius .
PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (10-12) :1444-1460
[8]   The Leray and Fujita-Kato theorems for the Boussinesq system with partial viscosity [J].
Danchin, Raphael ;
Paicu, Marius .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2008, 136 (02) :261-309
[9]   LARGE TIME BEHAVIOR FOR CONVECTION-DIFFUSION EQUATIONS IN RN [J].
ESCOBEDO, M ;
ZUAZUA, E .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :119-161
[10]   A note on regularity criterion for the 3D Boussinesq system with partial viscosity [J].
Fan, Jishan ;
Zhou, Yong .
APPLIED MATHEMATICS LETTERS, 2009, 22 (05) :802-805