A NOVEL COMPARATIVE STUDY FOR AUTOMATIC THREE-CLASS AND FOUR-CLASS COVID-19 CLASSIFICATION ON X-RAY IMAGES USING DEEP LEARNING

被引:1
|
作者
Yasar, Huseyin [1 ]
Ceylan, Murat [2 ]
机构
[1] Minist Hlth Republ Turkey, Ankara, Turkey
[2] Konya Tech Univ, Fac Engn & Nat Sci, Dept Elect & Elect Engn, Konya, Turkey
关键词
COVID-19; convolutional neural networks; x-ray chest classification; deep learning; local binary pattern; local entropy; densenet201; xception; inceptionv3;
D O I
10.22452/mjcs.vol35no4.5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The contagiousness rate of the COVID-19 virus, which was evaluated to have been transmitted from an animal to a human during the last months of 2019, is higher than the MERS-Cov and SARS-Cov viruses originating from the same family. The high rate of contagion has caused the COVID-19 virus to spread rapidly to all countries of the world. It is of great importance to be able to detect cases quickly in order to control the spread of the COVID-19 virus. Therefore, the development of systems that make automatic COVID-19 diagnoses using artificial intelligence approaches based on X-ray, CT scans, and ultrasound images are an urgent and indispensable requirement. In order to increase the number of X-ray images used within the study, a mixed data set was created by combining eight different data sets, thus maximizing the scope of the study. In the study, a total of 9,667 X-ray images were used, including 3,405 of COVID-19 samples, 2,780 of bacterial pneumonia samples, 1,493 of viral pneumonia samples and 1,989 of healthy samples. In this study, which aims to diagnose COVID-19 disease using X-ray images, automatic classification has been performed using two different classification structures: COVID-19 Pneumonia/Other Pneumonia/Healthy and COVID- 19 Pneumonia/Bacterial Pneumonia/Viral Pneumonia/Healthy. Convolutional Neural Networks (CNNs), a successful deep learning method, were used as a classifier within the study. A total of seven CNN architectures were used: Mobilenetv2, Resnet101, Googlenet, Xception, Densenet201, Efficientnetb0, and Inceptionv3 architectures. The classification results were obtained from the original X-ray images, and the images were obtained by using Local Binary Pattern and Local Entropy. Then, new classification results were calculated from the obtained results using a pipeline algorithm. Detailed results were obtained to meet the scope of the study. According to the results of the experiments carried out, the three most successful CNN architectures for both three-class and four-class automatic classification were Densenet201, Xception, and Inceptionv3, respectively. In addition, it is understood that the pipeline algorithm used in the study is very useful for improving the results. The study results show that up to an improvement of 1.57% were achieved in some comparison parameters.
引用
收藏
页码:376 / 402
页数:27
相关论文
共 50 条
  • [31] A deep learning based approach for automatic detection of COVID-19 cases using chest X-ray images
    Bhattacharyya, Abhijit
    Bhaik, Divyanshu
    Kumar, Sunil
    Thakur, Prayas
    Sharma, Rahul
    Pachori, Ram Bilas
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
  • [32] A deep learning-based COVID-19 automatic diagnostic framework using chest X-ray images
    Joshi, Rakesh Chandra
    Yadav, Saumya
    Pathak, Vinay Kumar
    Malhotra, Hardeep Singh
    Khokhar, Harsh Vardhan Singh
    Parihar, Anit
    Kohli, Neera
    Himanshu, D.
    Garg, Ravindra K.
    Bhatt, Madan Lal Brahma
    Kumar, Raj
    Singh, Naresh Pal
    Sardana, Vijay
    Burget, Radim
    Alippi, Cesare
    Travieso-Gonzalez, Carlos M.
    Dutta, Malay Kishore
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2021, 41 (01) : 239 - 254
  • [33] Metaheuristic Optimization Through Deep Learning Classification of COVID-19 in Chest X-Ray Images
    Samee, Nagwan Abdel
    El-Kenawy, El-Sayed M.
    Atteia, Ghada
    Jamjoom, Mona M.
    Ibrahim, Abdelhameed
    Abdelhamid, Abdelaziz A.
    El-Attar, Noha E.
    Gaber, Tarek
    Slowik, Adam
    Shams, Mahmoud Y.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02): : 4193 - 4210
  • [34] Machine Learning Techniques on X-ray Images for Covid-19 Classification
    Caroprese, Luciano
    Vocaturo, Eugenio
    Zumpano, Ester
    2022 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY, WI-IAT, 2022, : 539 - 543
  • [35] Classification of COVID-19 and Pneumonia X-ray Images Using a Transfer Learning Approach
    Kishore, Sai H. R.
    Bhargavi, M. S.
    Kumar, Pavan C.
    2021 IEEE REGION 10 SYMPOSIUM (TENSYMP), 2021,
  • [36] Covid-19 Detection in Chest X-ray Images with Deep Learning
    Ozdemir, Zeynep
    Yalim Keles, Hacer
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [37] COVID-19 Detection in Chest X-ray Images using a Deep Learning Approach
    Saiz, Fatima A.
    Barandiaran, Inigo
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2020, 6 (02): : 11 - 14
  • [38] Deep learning framework for early detection of COVID-19 using X-ray images
    Khero, Kainat
    Usman, Muhammad
    Fong, Alvis
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (03) : 6883 - 6908
  • [39] Improved COVID-19 detection with chest x-ray images using deep learning
    Gupta, Vedika
    Jain, Nikita
    Sachdeva, Jatin
    Gupta, Mudit
    Mohan, Senthilkumar
    Bajuri, Mohd Yazid
    Ahmadian, Ali
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (26) : 37657 - 37680
  • [40] COVID-19 Detection Using Chest X-Ray Images Based on Deep Learning
    Sani, Sudeshna
    Bera, Abhijit
    Mitra, Dipra
    Das, Kalyani Maity
    INTERNATIONAL JOURNAL OF SOFTWARE SCIENCE AND COMPUTATIONAL INTELLIGENCE-IJSSCI, 2022, 14 (01):