THE RAMSEY NUMBERS OF LARGE TREES VERSUS WHEELS

被引:0
|
作者
Zhu, D. [1 ]
Zhang, L. [2 ]
Li, D. [2 ]
机构
[1] Southeast Univ, Sch Econ & Management, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Sch Management & Engn, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Ramsey number; tree; wheel; R(T-N; W-6);
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For two given graphs G(1) and G(2), the Ramsey number R(G(1), G(2)) is the smallest integer n such that for any graph G of order n, either G contains G(1) or the complement of G contains G(2). Let T-n denote a tree of order n and W-m a wheel of order m + 1. To the best of our knowledge, only R(T-n, W-m) with small wheels are known. In this paper, we show that R(T-m, W-m) = 3n - 2 for odd m with n > 756m(10).
引用
收藏
页码:879 / 880
页数:2
相关论文
共 50 条