Adsorption of DNA and electric fields decrease the rigidity of lipid vesicle membranes

被引:11
|
作者
Frantescu, A [1 ]
Kakorin, S [1 ]
Toensing, K [1 ]
Neumann, E [1 ]
机构
[1] Univ Bielefeld, Fac Chem, D-33501 Bielefeld, Germany
关键词
D O I
10.1039/b510882a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The adsorption of calf-thymus DNA-fragments of 300 +/- 50 base pairs (bp) to the outer membrane monolayer of unilamellar lipid vesicles in the presence of Ca2+ ions has been quantified by the standard method of chemical relaxation spectrometry using polarized light. The vesicles of radius a = 150 +/- 45 nm are prepared from bovine brain extract type III containing 80-85% phosphatidylserine (PS) and palmitoyl-oleoyl-phosphatidylcholine (POPC) in the molar ratio PS : 2POPC; total lipid concentration [L-t] = 1 mM in 1 mM HEPES buffer, pH 7.4 at T = 293 K (20 degrees C). The turbidity relaxations of vesicle suspensions, at the wavelength gimel = 365 nm at two characteristic electric field strengths are identified as electroelongation of the whole vesicle coupled to smoothing of thermal membrane undulations and membrane stretching, and at higher fields, to membrane electroporation (MEP). The elongation kinetics indicates that the DNA adsorption renders the membrane more flexible and prone to membrane electroporation (MEP). Remarkably, it is found that the Ca-mediated adsorption of DNA (D) decreases both, bending rigidity K and stretching modulus K, along an unique Langmuir adsorption isotherm for the fraction of bound DNA at the given Ca concentration [Cat] = 0.25 mM. The characteristic chemomechanical parameter of the isotherm is the apparent dissociation equilibrium constant K(D,Ca) = 100 10 mu M (bp) of the ternary complex DCaB of DNA base pairs (bp) and Ca binding to sites B on the outer vesicle surface. Whereas both K and K decrease in the presence of high electric fields (E), the key parameter K(D,Ca) is independent of E in the range 0 <= E/(kV cm(-1)) <= 40.
引用
收藏
页码:4126 / 4131
页数:6
相关论文
共 50 条
  • [31] Electrohydrodynamic Model of Vesicle Deformation in Alternating Electric Fields
    Vlahovska, Petia M.
    Gracia, Ruben Serral
    Aranda-Espinoza, Said
    Dimova, Rumiana
    BIOPHYSICAL JOURNAL, 2009, 96 (12) : 4789 - 4803
  • [32] Vesicle dynamics in uniform electric fields: squaring and breathing
    McConnell, Lane C.
    Vlahovska, Petia M.
    Miksis, Michael J.
    SOFT MATTER, 2015, 11 (24) : 4840 - 4846
  • [33] Permeabilizing Cell Membranes with Electric Fields
    Aguilar, Alondra A.
    Ho, Michelle C.
    Chang, Edwin
    Carlson, Kristen W.
    Natarajan, Arutselvan
    Marciano, Tal
    Bomzon, Ze'ev
    Patel, Chirag B.
    CANCERS, 2021, 13 (09)
  • [34] Compaction of DNA at lipid membranes
    Dias, Rita S.
    Pais, Alberto A. C. C.
    Linse, Per
    BIOPHYSICAL JOURNAL, 2007, : 47A - 47A
  • [36] The Vesicle Trafficking Protein Sar1 Lowers Lipid Membrane Rigidity
    Settles, Edward I.
    Loftus, Andrew F.
    McKeown, Alesia N.
    Parthasarathy, Raghuveer
    BIOPHYSICAL JOURNAL, 2010, 99 (05) : 1539 - 1545
  • [37] CURRENT-VOLTAGE CURVES OF BLACK LIPID-MEMBRANES AT HIGH ELECTRIC-FIELDS
    BRENNECK.R
    PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1972, : R69 - &
  • [38] Theory for the bending rigidity of protein-coated lipid membranes
    Chen, CM
    PHYSICA A, 2000, 281 (1-4): : 41 - 50
  • [39] ADSORPTION OF AMINOADAMANTANE DERIVATIVES ON BILAYER LIPID-MEMBRANES - INFLUENCE ON THE ELECTRIC-FIELD DISTRIBUTION
    SIMONOVA, MV
    CHERNY, VV
    TULKES, SG
    MARKIN, VS
    BIOLOGICHESKIE MEMBRANY, 1984, 1 (05): : 516 - 523
  • [40] Electric Fields at the Lipid Membrane Interface
    Ermakov, Yury A.
    MEMBRANES, 2023, 13 (11)