Dynamic frictionless contact with adhesion

被引:76
作者
Chau, O
Shillor, M
Sofonea, M
机构
[1] Univ Perpignan, Lab Theorie Syst, F-66860 Perpignan, France
[2] Oakland Univ, Dept Math & Stat, Rochester, MI 48309 USA
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2004年 / 55卷 / 01期
关键词
adhesion; dynamic contact; normal compliance; viscoelastic material; existence and uniqueness; monotone operator; fixed point;
D O I
10.1007/s00033-003-1089-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A model for the dynamic, adhesive, frictionless contact between a viscoelastic body and a deformable foundation is described. The adhesion process is modeled by a bonding field on the contact surface. The contact is described by a modified normal compliance condition. The tangential shear due to the bonding field is included. The problem is formulated as a coupled system of a variational equality for the displacements and a differential equation for the bonding field. The existence of a unique weak solution for the problem is established, together with a partial regularity result. The existence proof proceeds by construction of an appropriate mapping which is shown to be a contraction on a Hilbert space.
引用
收藏
页码:32 / 47
页数:16
相关论文
共 21 条
[1]  
[Anonymous], 1991, UNILATERAL PROBLEMS
[2]  
[Anonymous], 1993, FUNCTIONAL NUMERICAL
[3]  
Barbu V, 1976, SEMIGROUPS DIFFERENT
[4]  
CANGEMI L, 1997, THESIS U MEDITERRANE
[5]   Variational and numerical analysis of a quasistatic viscoelastic contact problem with adhesion [J].
Chau, O ;
Fernández, JR ;
Shillor, M ;
Sofonea, M .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 159 (02) :431-465
[6]   A dynamic frictional contact problem with normal damped response [J].
Chau, O ;
Han, W ;
Sofonea, M .
ACTA APPLICANDAE MATHEMATICAE, 2002, 71 (02) :159-178
[7]  
Duvaut G., 1976, GRUNDLEHREN MATH WIS, DOI 10.1007/978-3-642-66165-5
[8]  
FREMOND M, 1987, J MEC THEOR APPL, V6, P383
[9]  
FREMOND M, 1982, CR ACAD SCI II, V295, P913
[10]  
Han W., 1999, APPL MATH, V25, P415