Computational Design of Enantiocomplementary Epoxide Hydrolases for Asymmetric Synthesis of Aliphatic and Aromatic Diols

被引:15
作者
Arabnejad, Hesam [1 ]
Bombino, Elvira [1 ]
Colpa, Dana I. [1 ]
Jekel, Peter A. [1 ]
Trajkovic, Milos [1 ]
Wijma, Hein J. [1 ]
Janssen, Dick B. [1 ]
机构
[1] Univ Groningen, Groningen Biomol Sci & Biotechnol Inst, Biotransformat & Biocatalysis, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
基金
欧盟地平线“2020”;
关键词
computational design; enantioselectivity; epoxide hydrolase; molecular dynamics; stilbene oxide; MOLECULAR-DYNAMICS SIMULATIONS; DIRECTED EVOLUTION; CATALYTIC MECHANISM; ITERATIVE APPROACH; TRANSITION-STATE; ENZYME; EFFICIENT; STEREOSELECTIVITY; BIOCATALYSIS; PROTEINS;
D O I
10.1002/cbic.201900726
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The use of enzymes in preparative biocatalysis often requires tailoring enzyme selectivity by protein engineering. Herein we explore the use of computational library design and molecular dynamics simulations to create variants of limonene epoxide hydrolase that produce enantiomeric diols frommeso-epoxides. Three substrates of different sizes were targeted:cis-2,3-butene oxide, cyclopentene oxide, andcis-stilbene oxide. Most of the 28 designs tested were active and showed the predicted enantioselectivity. Excellent enantioselectivities were obtained for the bulky substratecis-stilbene oxide, and enantiocomplementary mutants produced (S,S)- and (R,R)-stilbene diol with >97 % enantiomeric excess. An (R,R)-selective mutant was used to prepare (R,R)-stilbene diol with high enantiopurity (98 % conversion into diol, >99 % ee). Some variants displayed higher catalytic rates (k(cat)) than the original enzyme, but in most casesK(M)values increased as well. The results demonstrate the feasibility of computational design and screening to engineer enantioselective epoxide hydrolase variants with very limited laboratory screening.
引用
收藏
页码:1893 / 1904
页数:12
相关论文
共 81 条
[1]   CADEE: Computer-Aided Directed Evolution of Enzymes [J].
Amrein, Beat Anton ;
Steffen-Munsberg, Fabian ;
Szeler, Ireneusz ;
Purg, Miha ;
Kulkarni, Yashraj ;
Kamerlin, Shina Caroline Lynn .
IUCRJ, 2017, 4 :50-64
[2]  
[Anonymous], ANGEW CHEM INT ED
[3]  
[Anonymous], 2013, ANGEW CHEM, DOI DOI 10.1002/ANGE.201300594
[4]   A robust cosolvent-compatible halohydrin dehalogenase by computational library design [J].
Arabnejad, Hesam ;
Dal Lago, Marco ;
Jekel, Peter A. ;
Floor, Robert J. ;
Thunnissen, Andy-Mark W. H. ;
van Scheltinga, Anke C. Terwisscha ;
Wijma, Hein J. ;
Janssen, Dick B. .
PROTEIN ENGINEERING DESIGN & SELECTION, 2017, 30 (03) :175-189
[5]   Structure of Rhodococcus erythropolis limonene-1,2-epoxide hydrolase reveals a novel active site [J].
Arand, M ;
Hallberg, BM ;
Zou, JY ;
Bergfors, T ;
Oesch, F ;
van der Werf, MJ ;
de Bont, JAM ;
Jones, TA ;
Mowbray, SL .
EMBO JOURNAL, 2003, 22 (11) :2583-2592
[6]  
Arnold F. H., 2019, ANGEW CHEM, V131, P14558, DOI DOI 10.1002/ANGE.201907729
[7]   Innovation by Evolution: Bringing New Chemistry to Life (Nobel Lecture) [J].
Arnold, Frances H. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (41) :14420-14426
[8]   FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants [J].
Bednar, David ;
Beerens, Koen ;
Sebestova, Eva ;
Bendl, Jaroslav ;
Khare, Sagar ;
Chaloupkova, Radka ;
Prokop, Zbynek ;
Brezovsky, Jan ;
Baker, David ;
Damborsky, Jiri .
PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (11)
[9]   Relative tolerance of mesostable and thermostable protein homologs to extensive mutation [J].
Besenmatter, Werner ;
Kast, Peter ;
Hilvert, Donald .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2007, 66 (02) :500-506
[10]   Protein stability promotes evolvability [J].
Bloom, JD ;
Labthavikul, ST ;
Otey, CR ;
Arnold, FH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (15) :5869-5874