Identification of the Fractional-Order Systems: A Frequency Domain Approach

被引:0
|
作者
Dzielinski, Andrzej [1 ]
Sierociuk, Dominik
Sarwas, Grzegorz
Petras, Ivo [2 ]
Podlubny, Igor
Skovranek, Tomas
机构
[1] Warsaw Univ Technol, Fac Elect Engn, Inst Control & Ind Elect, Warsaw, Poland
[2] Tech Univ Kosice, BERG Fac, Inst Control & Informatizat Prod Proc, Kosice 04200, Slovakia
关键词
fractional calculus; frequency response; least squares method; total least squares method; ultracapacitor;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The paper deals with a comparison of different optimization methods to identification of fractional order dynamical systems. The fractional models of the examples of physical systems - ultracapacitors - are established. Then different real frequency responses data from a laboratory setup of the processes are collected and the comparison of identification methods based on least squares and total least squares are presented. The accuracy of the methods is discussed using the frequency responses of the identified model and the theoretical one.
引用
收藏
页码:26 / 33
页数:8
相关论文
共 50 条
  • [31] Parameter identification and synchronization of fractional-order chaotic systems
    Yuan, Li-Guo
    Yang, Qi-Gui
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (01) : 305 - 316
  • [32] IDENTIFICATION OF FRACTIONAL-ORDER DYNAMICAL SYSTEMS AS A NONLINEAR PROBLEM
    Dorcak, E.
    Terpak, J.
    Papajova, M.
    Pivka, L.
    PROCEEDINGS OF 11TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE, 2010, 2010, : 335 - 338
  • [33] CIM applications in fractional domain: Fractional-order universal filter & fractional-order oscillator
    Varshney, Garima
    Pandey, Neeta
    Minaei, Shahram
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2022, 156
  • [34] Design of Functional Fractional-Order Observers for Linear Time-Delay Fractional-Order Systems in the Time Domain
    Boukal, Y.
    Darouach, M.
    Zasadzinski, M.
    Radhy, N. E.
    2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,
  • [35] Parametric identification of fractional-order systems using a fractional Legendre basis
    Ghanbari, M.
    Haeri, M.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2010, 224 (I3) : 261 - 274
  • [36] Fractional-order ADRC framework for fractional-order parallel systems
    Li, Zong-yang
    Wei, Yi-heng
    Wang, Jiachang
    Li, Aug
    Wang, Jianli
    Wang, Yong
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 1813 - 1818
  • [37] Frequency domain subspace identification of fractional order systems using time domain data with outliers
    Li, Zongyang
    Wei, Yiheng
    Wang, Jiachang
    Deng, Yongting
    Wang, Jianli
    Wang, Yong
    ASIAN JOURNAL OF CONTROL, 2021, 23 (06) : 2617 - 2627
  • [38] Stabilization of Singular Fractional-Order Systems : An LMI Approach
    N'Doye, Ibrahima
    Zasadzinski, Michel
    Darouach, Mohamed
    Radhy, Nour-Eddine
    18TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, 2010, : 209 - 213
  • [39] A practical synchronization approach for fractional-order chaotic systems
    Zhou, Ping
    Zhu, Peng
    NONLINEAR DYNAMICS, 2017, 89 (03) : 1719 - 1726
  • [40] A practical synchronization approach for fractional-order chaotic systems
    Ping Zhou
    Peng Zhu
    Nonlinear Dynamics, 2017, 89 : 1719 - 1726