The full renormalization horseshoe for unimodal maps of higher degree: exponential contraction along hybrid classes

被引:23
作者
Avila, Artur [1 ,2 ]
Lyubich, Mikhail [3 ]
机构
[1] Inst Math Jussieu, CNRS UMR 7586, F-75013 Paris, France
[2] IMPA, BR-22460320 Rio De Janeiro, Brazil
[3] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
来源
PUBLICATIONS MATHEMATIQUES DE L IHES | 2011年 / 114期
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
QUADRATIC POLYNOMIALS; REAL POLYNOMIALS; DYNAMICS; UNIVERSALITY; MAPPINGS; POINTS; BOUNDS; SET;
D O I
10.1007/s10240-011-0034-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove exponential contraction of renormalization along hybrid classes of infinitely renormalizable unimodal maps (with arbitrary combinatorics), in any even degree d. We then conclude that orbits of renormalization are asymptotic to the full renormalization horseshoe, which we construct. Our argument for exponential contraction is based on a precompactness property of the renormalization operator ("beau bounds"), which is leveraged in the abstract analysis of holomorphic iteration. Besides greater generality, it yields a unified approach to all combinatorics and degrees: there is no need to account for the varied geometric details of the dynamics, which were the typical source of contraction in previous restricted proofs.
引用
收藏
页码:171 / 223
页数:53
相关论文
共 37 条
[11]  
DOUADY A, 1987, P INT C MATH BERK CA, P724
[12]   Fixed points of composition operators II [J].
Epstein, Henri .
NONLINEARITY, 1989, 2 (02) :305-310
[13]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52
[14]   Generic hyperbolicity in the logistic family [J].
Graczyk, J ;
Swiatek, G .
ANNALS OF MATHEMATICS, 1997, 146 (01) :1-52
[15]   Parabolic limits of renormalization [J].
Hinkle, B .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 :173-229
[16]  
KAHN J, 2006, PREPRINT IMS STONY B, V5
[17]  
Kahn J., 2009, Complex Dynamics: Families and Friends, Ved, ppp 229
[18]  
Kahn J, 2008, ANN SCI ECOLE NORM S, V41, P57
[19]   Rigidity for real polynomials [J].
Kozlovski, O. ;
Shen, W. ;
Van Strien, S. .
ANNALS OF MATHEMATICS, 2007, 165 (03) :749-841
[20]   ON INVARIANT MEASURES FOR EXPANDING DIFFERENTIABLE MAPPINGS [J].
KRZYZEWSKI, K ;
SZLENK, W .
STUDIA MATHEMATICA, 1969, 33 (01) :83-+