The full renormalization horseshoe for unimodal maps of higher degree: exponential contraction along hybrid classes

被引:23
作者
Avila, Artur [1 ,2 ]
Lyubich, Mikhail [3 ]
机构
[1] Inst Math Jussieu, CNRS UMR 7586, F-75013 Paris, France
[2] IMPA, BR-22460320 Rio De Janeiro, Brazil
[3] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
来源
PUBLICATIONS MATHEMATIQUES DE L IHES | 2011年 / 114期
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
QUADRATIC POLYNOMIALS; REAL POLYNOMIALS; DYNAMICS; UNIVERSALITY; MAPPINGS; POINTS; BOUNDS; SET;
D O I
10.1007/s10240-011-0034-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove exponential contraction of renormalization along hybrid classes of infinitely renormalizable unimodal maps (with arbitrary combinatorics), in any even degree d. We then conclude that orbits of renormalization are asymptotic to the full renormalization horseshoe, which we construct. Our argument for exponential contraction is based on a precompactness property of the renormalization operator ("beau bounds"), which is leveraged in the abstract analysis of holomorphic iteration. Besides greater generality, it yields a unified approach to all combinatorics and degrees: there is no need to account for the varied geometric details of the dynamics, which were the typical source of contraction in previous restricted proofs.
引用
收藏
页码:171 / 223
页数:53
相关论文
共 37 条
[1]  
AKLS A, 2009, ANN MATH, V170, P783
[2]  
[Anonymous], 1994, ANN MATH STUDIES
[3]   Regular or stochastic dynamics in real analytic families of unimodal maps [J].
Avila, A ;
Lyubich, M ;
de Melo, W .
INVENTIONES MATHEMATICAE, 2003, 154 (03) :451-550
[4]   Parapuzzle of the Multibrot set and typical dynamics of unimodal maps [J].
Avila, Artur ;
Lyubich, Mikhail ;
Shen, Weixiao .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (01) :27-56
[5]  
CARTAN CH, 1986, C R ACAD SCI PARI IM, V303, P715
[6]   COMBINATORIAL RIGIDITY FOR SOME INFINITELY RENORMALIZABLE UNICRITICAL POLYNOMIALS [J].
Cheraghi, Davoud .
CONFORMAL GEOMETRY AND DYNAMICS, 2010, 14 :219-255
[7]  
Cvitanovi P., 1984, UNIVERSALITY CHAOS
[8]  
de Faria E., 1999, J. Eur. Math. Soc, V1, P339, DOI [10.1007/s100970050011, DOI 10.1007/S100970050011]
[9]  
deMelo W., 1993, One-Dimensional Dynamics, V25
[10]  
DOUADY A, 1985, ANN SCI ECOLE NORM S, V18, P287