A photoelectrochemical study of CdS modified TiO2 nanotube arrays as photoanodes for cathodic protection of stainless steel

被引:80
作者
Li, Jing
Lin, Chang-Jian [1 ]
Li, Jun-Tao
Lin, Ze-Quan
机构
[1] Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
Titanium oxide; Nanotube arrays; Anodization; Cadmium sulfate; Photoelectrochemical measurements; Cathodic protection; Steel; CORROSION PROTECTION; QUANTUM DOTS; SOLAR-CELLS; COUPLED SEMICONDUCTOR; NANOCRYSTALLINE TIO2; TITANIA NANOTUBES; WATER; FABRICATION; HYDROGEN; FILMS;
D O I
10.1016/j.tsf.2011.03.116
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An electrodeposited CdS nanoparticles-modified highly-ordered TiO2 nanotube arrays (CdS-TNs) photoelectrode and its performance of photocathodic protection are reported. The self-organized TiO2 nanotube arrays are fabricated by electrochemical anodization in an organic-inorganic mixed electrolyte and sensitized with CdS nanoparticles by electrodeposition via a single-step direct current. The morphology, crystalline phase, and composition of the CdS-TNs films were characterized systematically by scanning electron microscopy, Xray diffraction, X-ray photoelectron spectroscopy, and ultraviolet-visible (UV-Vis) spectroscopy, respectively. The photoelectrochemical performances of the CdS-TNs film under illumination and dark conditions in 0.5 M NaCl solution were evaluated through the electrochemical measurements. It is indicated that the TNs incorporated by CdS effectively harvest solar light in the UV as well as the visible light (up to 480 nm) region. It is supposed that the high photoelectro-response activity of the CdS-TNs is attributed to the increased efficiency of charge separation and transport of electrons. The electrode potentials of 304 stainless steel coupled with the CdS-TNs is found to be negatively shifted for about 246 mV and 215 mV under UV and white light irradiation, respectively, which can be remained for 24 h even in darkness. It is implied that the CdS-TNs are able to effectively function a photogenerated cathodic protection for metals both under the UV and visible light illumination. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:5494 / 5502
页数:9
相关论文
共 56 条
[1]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[2]   Synthesis of Coupled Semiconductor by Filling 1D TiO2 Nanotubes with CdS [J].
Banerjee, Subarna ;
Mohapatra, Susanta K. ;
Das, Prajna P. ;
Misra, Mano .
CHEMISTRY OF MATERIALS, 2008, 20 (21) :6784-6791
[3]   Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells [J].
Bisquert, J ;
Cahen, D ;
Hodes, G ;
Rühle, S ;
Zaban, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (24) :8106-8118
[4]   Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight:: Nanostructure-directing effect of Si-doping [J].
Cesar, I ;
Kay, A ;
Martinez, JAG ;
Grätzel, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (14) :4582-4583
[5]  
CHALLER SRD, 2004, PHYS REV LETT, V92
[6]   Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes:: Preparation, characterization, and application to photoelectrochemical cells [J].
Chen, SG ;
Paulose, M ;
Ruan, C ;
Mor, GK ;
Varghese, OK ;
Kouzoudis, D ;
Grimes, CA .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2006, 177 (2-3) :177-184
[7]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[8]   An Efficient Method To Form Heterojunction CdS/TiO2 Photoelectrodes Using Highly Ordered TiO2 Nanotube Array Films [J].
Gao, Xian-Feng ;
Sun, Wen-Tao ;
Hu, Zhu-Dong ;
Ai, Guo ;
Zhang, Yi-Ling ;
Feng, Shi ;
Li, Fei ;
Peng, Lian-Mao .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (47) :20481-20485
[9]   CHARGE-TRANSFER PROCESSES IN COUPLED SEMICONDUCTOR SYSTEMS - PHOTOCHEMISTRY AND PHOTOELECTROCHEMISTRY OF THE COLLOIDAL CDS-ZNO SYSTEM [J].
HOTCHANDANI, S ;
KAMAT, PV .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (16) :6834-6839
[10]   Simultaneous hydrogen production and decomposition of H2S dissolved in alkaline water over CdS-TiO2 composite photocatalysts under visible light irradiation [J].
Jang, Jum Suk ;
Kim, Hyun Gyu ;
Borse, Pramod H. ;
Lee, Jae Sung .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (18) :4786-4791