A Combined Loss-Based Multiscale Fully Convolutional Network for High-Resolution Remote Sensing Image Change Detection

被引:131
|
作者
Li, Xinghua [1 ]
He, Meizhen [2 ]
Li, Huifang [2 ]
Shen, Huanfeng [2 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
[2] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Remote sensing; Convolution; Feature extraction; Training; Task analysis; Loss measurement; Convolutional neural networks; Change detection (CD); combined loss function; high-resolution remote sensing images (HRSIs); multiscale fully convolutional neural network (MFCN); MODEL;
D O I
10.1109/LGRS.2021.3098774
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In the task of change detection (CD), high-resolution remote sensing images (HRSIs) can provide rich ground object information. However, the interference from noise and complex background information can also bring some challenges to CD. In recent years, deep learning methods represented by convolutional neural networks (CNNs) have achieved good CD results. However, the existing methods have difficulty in detecting the detailed change information of the ground objects effectively. The imbalance of positive and negative samples can also seriously affect the CD results. In this letter, to solve the above problems, we propose a method based on a multiscale fully convolutional neural network (MFCN), which uses multiscale convolution kernels to extract the detailed features of the ground object features. A loss function combining weighted binary cross-entropy (WBCE) loss and dice coefficient loss is also proposed, so that the model can be trained from unbalanced samples. The proposed method was compared with six state-of-the-art CD methods on the DigitalGlobe dataset. The experiments showed that the proposed method can achieve a higher F1-score, and the detection effect of the detailed changes was better than that of the other methods.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Building Change Detection Based on Fully Convolutional Network in High-Resolution Remote Sensing Images
    Wang, Wei
    Xia, Luocheng
    Wang, Xin
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT IV, ICIC 2024, 2024, 14865 : 111 - 123
  • [2] Multiscale Fusion CNN-Transformer Network for High-Resolution Remote Sensing Image Change Detection
    Jiang, Ming
    Chen, Yimin
    Dong, Zhe
    Liu, Xiaoping
    Zhang, Xinchang
    Zhang, Honghui
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 5280 - 5293
  • [3] Remote Sensing Image Change Detection Network Based on Twin High-Resolution Representation
    Wu X.
    Ma Y.
    Yan H.
    Qiao Z.
    Wu C.
    Guo C.
    Yao S.
    Fan Y.
    Mobile Information Systems, 2023, 2023
  • [4] High-Resolution Remote Sensing Image Change Detection Based on Fourier Feature Interaction and Multiscale Perception
    Chen, Yongqi
    Feng, Shou
    Zhao, Chunhui
    Su, Nan
    Li, Wei
    Tao, Ran
    Ren, Jinchang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [5] NestNet: a multiscale convolutional neural network for remote sensing image change detection
    Yu, Xiao
    Fan, Junfu
    Chen, Jiahao
    Zhang, Peng
    Zhou, Yuke
    Han, Liusheng
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (13) : 4902 - 4925
  • [6] Multiscale Change Detection Network Based on Channel Attention and Fully Convolutional BiLSTM for Medium-Resolution Remote Sensing Imagery
    Li, Jialu
    Hu, Meiqi
    Wu, Chen
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 10162 - 10175
  • [7] Classification of High-Resolution Remote Sensing Images in the Feilaixia Reservoir Based on a Fully Convolutional Network
    Wu, Pinghao
    Zhong, Kaiwen
    Hu, Hongda
    Xu, Jianhui
    Wang, Yunpeng
    Zhao, Yi
    IEEE ACCESS, 2020, 8 : 161752 - 161764
  • [8] Locality-Aware Rotated Ship Detection in High-Resolution Remote Sensing Imagery Based on Multiscale Convolutional Network
    Liu, Lingyi
    Bai, Yunpeng
    Li, Ying
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [9] High-Resolution Remote Sensing Image Change Detection Based on Cross-Mixing Attention Network
    Wu, Chaoyang
    Yang, Le
    Guo, Cunge
    Wu, Xiaosuo
    ELECTRONICS, 2024, 13 (03)
  • [10] A Siamese Network with a Multiscale Window-Based Transformer via an Adaptive Fusion Strategy for High-Resolution Remote Sensing Image Change Detection
    Tao, Chao
    Kuang, Dongsheng
    Wu, Kai
    Zhao, Xiaomei
    Zhao, Chunyan
    Du, Xin
    Zhang, Yunsheng
    REMOTE SENSING, 2023, 15 (09)