Heavy ion reflection and heating by collisionless shocks in polar solar corona

被引:22
作者
Zimbardo, Gaetano [1 ]
机构
[1] Univ Calabria, Dept Phys, I-87036 Arcavacata Di Rende, Italy
关键词
Solar corona; Shock waves; Plasmas; Solar wind; X-RAY JETS; ELECTRON WHISTLER INTERACTION; QUASI-PERPENDICULAR SHOCKS; EARTHS BOW SHOCK; MAGNETIC RECONNECTION; TERMINATION SHOCK; ACCELERATION; DISTRIBUTIONS; CYCLOTRON; BEAMS;
D O I
10.1016/j.pss.2010.03.010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose a new model for explaining the observations of preferential heating of heavy ions in the polar solar corona. We consider that a large number of small scale shock waves can be present in the solar corona, as suggested by recent observations of polar coronal jets by the Hinode and STEREO spacecraft. The heavy ion energization mechanism is, essentially, the ion reflection off supercritical quasi-perpendicular collisionless shocks in the corona and the subsequent acceleration by the motional electric field E= -(1/c)V x B. The acceleration due to E is perpendicular to the magnetic field, giving rise to large temperature anisotropy with T-perpendicular to >> T-parallel to, which can excite ion cyclotron waves. Also, heating is more than mass proportional with respect to protons, because the heavy ion orbit is mostly upstream of the quasi-perpendicular shock foot. The observed temperature ratios between O5+ ions and protons in the polar corona, and between alpha particles and protons in the solar wind are easily recovered. We also discuss the mechanism of heavy ion reflection, which is based on ion gyration in the magnetic overshoot of the shock. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:468 / 474
页数:7
相关论文
共 66 条
[1]  
Aschwanden M. J., 2005, Physics of the Solar Corona. An Introduction with Problems and Solutions, V2nd ed.
[2]   Radio observation of electron acceleration at solar flare reconnection outflow termination shocks [J].
Aurass, H ;
Mann, G .
ASTROPHYSICAL JOURNAL, 2004, 615 (01) :526-530
[3]   Measurement of large parallel and perpendicular electric fields on electron spatial scales in the terrestrial bow shock [J].
Bale, S. D. ;
Mozer, F. S. .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)
[4]   Quasi-perpendicular shock structure and processes [J].
Bale, SD ;
Balikhin, MA ;
Horbury, TS ;
Krasnoselskikh, VV ;
Kucharek, H ;
Möbius, E ;
Walker, SN ;
Balogh, A ;
Burgess, D ;
Lembège, B ;
Lucek, EA ;
Scholer, M ;
Schwartz, SJ ;
Thomsen, MF .
SPACE SCIENCE REVIEWS, 2005, 118 (1-4) :161-203
[5]   Excess heating of He-4(2+) and O6+ relative to H+ downstream of interplanetary shocks [J].
Berdichevsky, D ;
Geiss, J ;
Gloeckler, G ;
Mall, U .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1997, 102 (A2) :2623-2635
[6]  
BURGESS D, 1987, ANN GEOPHYS A-UPPER, V5, P133
[7]   ION DISTRIBUTIONS AND THERMALIZATION AT PERPENDICULAR AND QUASI-PERPENDICULAR SUPERCRITICAL COLLISIONLESS SHOCKS [J].
BURGESS, D ;
WILKINSON, WP ;
SCHWARTZ, SJ .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1989, 94 (A7) :8783-8792
[8]   Magnetic fields at the solar wind termination shock [J].
Burlaga, L. F. ;
Ness, N. F. ;
Acuna, M. H. ;
Lepping, R. P. ;
Connerney, J. E. P. ;
Richardson, J. D. .
NATURE, 2008, 454 (7200) :75-77
[9]   Evidence for Alfven waves in solar x-ray jets [J].
Cirtain, J. W. ;
Golub, L. ;
Lundquist, L. ;
van Ballegooijen, A. ;
Savcheva, A. ;
Shimojo, M. ;
DeLuca, E. ;
Tsuneta, S. ;
Sakao, T. ;
Reeves, K. ;
Weber, M. ;
Kano, R. ;
Narukage, N. ;
Shibasaki, K. .
SCIENCE, 2007, 318 (5856) :1580-1582
[10]   Spectroscopic constraints on models of ion cyclotron resonance heating in the polar solar corona and high-speed solar wind [J].
Cranmer, SR ;
Field, GB ;
Kohl, JL .
ASTROPHYSICAL JOURNAL, 1999, 518 (02) :937-947