The boundedness for commutators of a class of maximal hypersingular integrals with variable kernels

被引:7
作者
Chen, Yanping [1 ]
Ding, Yong [2 ]
Li, Ran [2 ]
机构
[1] Beijing Univ Sci & Technol, Dept Math & Mech, Beijing 100083, Peoples R China
[2] Beijing Normal Univ, Lab Math & Complex Syst BNU, Minist Educ, Sch Math Sci, Beijing 100875, Peoples R China
关键词
Commutator; Maximal hypersingular integrals; Variable kernel; BMO; Sobolev space; Spherical harmonic function; SPACES; OPERATORS; TRANSFORM; INEQUALITIES; EQUATIONS;
D O I
10.1016/j.na.2011.04.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the authors proved that a class of maximal hypersingular integrals with variable kernels are bounded from the Sobolev space. (L) over dot(gamma)(2) (R(n)) to the Lebesgue space L(2)(R(n)), which is a substantial improvement and extension of some known results. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4918 / 4940
页数:23
相关论文
共 23 条
[1]   SOME INEQUALITIES FOR MAXIMAL OPERATORS [J].
AGUILERA, NE ;
HARBOURE, EO .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1980, 29 (04) :559-576
[2]  
[Anonymous], 1991, Ric. Mat.
[3]  
[Anonymous], 1978, Appl Anal, DOI 10.1080/00036817808839193
[4]  
[Anonymous], 1966, TREATISE THEORY BESS
[5]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[6]  
Calderon A.P., 1955, T AM MATHSOC, V78, P209
[7]   Certain operators with rough singular kernels [J].
Chen, JC ;
Fan, DS ;
Ying, YM .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2003, 55 (03) :504-532
[8]  
Chen YP, 2008, REV MAT IBEROAM, V24, P531
[9]   Boundedness for Commutators of Rough Hypersingular Integrals with Variable Kernels [J].
Chen, Yanping ;
Ding, Yong .
MICHIGAN MATHEMATICAL JOURNAL, 2010, 59 (01) :189-210
[10]  
CHRIST M, 1986, DUKE MATH J, V53, P189, DOI 10.1215/S0012-7094-86-05313-5