Finite-temperature bosonization

被引:0
作者
Bowen, G [1 ]
Gulácsi, M [1 ]
机构
[1] Australian Natl Univ, Inst Adv Studies, Dept Theoret Phys, Canberra, ACT 0200, Australia
来源
PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES | 2001年 / 81卷 / 10期
关键词
D O I
10.1080/13642810108208563
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Finite-temperature properties of a non-Fermi-liquid system is one of the most challenging problems in the current understanding of strongly correlated electron systems. The paradigmatic arena for studying non-Fermi liquids is in one dimension, where the concept of a Luttinger liquid has arisen. The existence of a critical point at zero temperature in one-dimensional systems, and the fact that experiments are all undertaken at finite temperatures, implies a need for these one-dimensional systems to be examined at finite temperatures. Accordingly, we extended the well-known bosonization method of one-dimensional electron systems to finite temperatures. We have used this new bosonization method to calculate finite-temperature asymptotic correlation functions for linear fermions, the Tomonaga-Luttinger model. and the Hubbard model.
引用
收藏
页码:1409 / 1442
页数:34
相关论文
共 50 条
[41]   GLUON POLARIZATION AT FINITE-TEMPERATURE AND DENSITY [J].
MASOOD, SS ;
HASEEB, MQ .
ASTROPARTICLE PHYSICS, 1995, 3 (04) :405-412
[42]   CHIRAL AND GLUON CONDENSATES AT FINITE-TEMPERATURE [J].
SOLLFRANK, J ;
DOTTERWEICH, J ;
HEINZ, U .
NUCLEAR PHYSICS A, 1994, 566 :C563-C566
[43]   CHIRAL AND GLUON CONDENSATES AT FINITE-TEMPERATURE [J].
SOLLFRANK, J ;
HEINZ, U .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1995, 65 (01) :111-121
[44]   Finite-temperature anisotropy of magnetic alloys [J].
Skomski, R ;
Mryasov, ON ;
Zhou, J ;
Sellmyer, DJ .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (08)
[45]   FINITE-TEMPERATURE QCD AT LARGE N [J].
PISARSKI, RD .
PHYSICAL REVIEW D, 1984, 29 (06) :1222-1227
[46]   ANALYZING FINITE-TEMPERATURE MESONIC CORRELATORS [J].
AKEMI, K ;
FUJISAKI, M ;
OKUDA, M ;
TAGO, Y ;
HASHIMOTO, T ;
HIOKI, S ;
MIYAMURA, O ;
NAKAMURA, A ;
DEFORCRAND, P ;
STAMATESCU, IO ;
TAKAISHI, T .
NUCLEAR PHYSICS B, 1995, :445-447
[47]   Finite-Temperature Form Factors: a Review [J].
Doyon, Benjamin .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
[48]   COMPUTING FINITE-TEMPERATURE LOOPS WITH EASE [J].
PISARSKI, RD .
NUCLEAR PHYSICS B, 1988, 309 (03) :476-492
[49]   SPACELIKE WILSON LOOPS AT FINITE-TEMPERATURE [J].
KARKKAINEN, L ;
LACOCK, P ;
MILLER, DE ;
PETERSSON, B ;
REISZ, T .
PHYSICS LETTERS B, 1993, 312 (1-2) :173-178
[50]   Finite-temperature magnetism of FeRh compounds [J].
Polesya, S. ;
Mankovsky, S. ;
Koedderitzsch, D. ;
Minar, J. ;
Ebert, H. .
PHYSICAL REVIEW B, 2016, 93 (02)