Phylodynamic Inference of Bacterial Outbreak Parameters Using Nanopore Sequencing

被引:10
作者
Steinig, Eike [1 ,2 ,3 ]
Duchene, Sebastian [1 ]
Aglua, Izzard [4 ]
Greenhill, Andrew [5 ]
Ford, Rebecca [5 ]
Yoannes, Mition [5 ]
Jaworski, Jan [4 ]
Drekore, Jimmy [6 ]
Urakoko, Bohu [4 ]
Poka, Harry [4 ]
Wurr, Clive [7 ]
Ebos, Eri [7 ]
Nangen, David [7 ]
Manning, Laurens [8 ,9 ]
Laman, Moses [5 ]
Firth, Cadhla [2 ,3 ]
Smith, Simon [10 ]
Pomat, William [5 ]
Tong, Steven Y. C. [1 ,11 ]
Coin, Lachlan [1 ]
McBryde, Emma [2 ,3 ]
Horwood, Paul [5 ,12 ]
机构
[1] Univ Melbourne, Dept Infect Dis, Peter Doherty Inst Infect & Immun, Melbourne, Vic, Australia
[2] James Cook Univ, Australian Inst Trop Hlth & Med, Townsville, Qld, Australia
[3] James Cook Univ, Australian Inst Trop Hlth & Med, Cairns, Qld, Australia
[4] Joseph Nombri Mem Kundiawa Gen Hosp, Kundiawa, Papua N Guinea
[5] Papua New Guinea Inst Med Res, Goroka, Papua, Papua N Guinea
[6] Simbu Childrens Fdn, Kundiawa, Papua N Guinea
[7] Goroka Gen Hosp, Surg Dept, Goroka, Papua N Guinea
[8] Fiona Stanley Hosp, Dept Infect Dis, Murdoch, WA, Australia
[9] Univ Western Australia, Fiona Stanley Hosp, Med Sch, Harry Perkins Res Inst, Murdoch, WA, Australia
[10] Queensland Hlth, Cairns Hosp & Hinterland Hlth Serv, Cairns, Australia
[11] Royal Melbourne Hosp, Victorian Infect Dis Serv, Peter Doherty Inst Infect & Immun, Melbourne, Vic, Australia
[12] James Cook Univ, Coll Publ Hlth Med & Vet Sci, Townsville, Qld, Australia
基金
英国医学研究理事会;
关键词
nanopore; phylodynamics; bacteria; outbreaks; reproduction number; BEAST; ZIKA VIRUS; REAL-TIME; ESTABLISHMENT; SURVEILLANCE;
D O I
10.1093/molbev/msac040
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nanopore sequencing and phylodynamic modeling have been used to reconstruct the transmission dynamics of viral epidemics, but their application to bacterial pathogens has remained challenging. Cost-effective bacterial genome sequencing and variant calling on nanopore platforms would greatly enhance surveillance and outbreak response in communities without access to sequencing infrastructure. Here, we adapt random forest models for single nucleotide polymorphism (SNP) polishing developed by Sanderson and colleagues (2020. High precision Neisseria gonorrhoeae variant and antimicrobial resistance calling from metagenomic nanopore sequencing. Genome Res. 30(9):1354-1363) to estimate divergence and effective reproduction numbers (R-e) of two methicillin-resistant Staphylococcus aureus (MRSA) outbreaks from remote communities in Far North Queensland and Papua New Guinea (PNG; n = 159). Successive barcoded panels of S. aureus isolates (2 x 12 per MinION) sequenced at low coverage (>5x to 10x) provided sufficient data to accurately infer genotypes with high recall when compared with Illumina references. Random forest models achieved high resolution on ST93 outbreak sequence types (>90% accuracy and precision) and enabled phylodynamic inference of epidemiological parameters using birth-death skyline models. Our method reproduced phylogenetic topology, origin of the outbreaks, and indications of epidemic growth (R-e > 1). Nextflow pipelines implement SNP polisher training, evaluation, and outbreak alignments, enabling reconstruction of within-lineage transmission dynamics for infection control of bacterial disease outbreaks on portable nanopore platforms. Our study shows that nanopore technology can be used for bacterial outbreak reconstruction at competitive costs, providing opportunities for infection control in hospitals and communities without access to sequencing infrastructure, such as in remote northern Australia and PNG.
引用
收藏
页数:14
相关论文
共 49 条
[1]   BEAGLE 3: Improved Performance, Scaling, and Usability for a High-Performance Computing Library for Statistical Phylogenetics [J].
Ayres, Daniel ;
Cummings, Michael ;
Baele, Guy ;
Darling, Aaron ;
Lewis, Paul ;
Swofford, David ;
Huelsenbeck, John ;
Lemey, Philippe ;
Rambaut, Andrew ;
Suchard, Marc .
SYSTEMATIC BIOLOGY, 2019, 68 (06) :1052-1061
[2]   Analytical validity of nanopore sequencing for rapid SARS-CoV-2 genome analysis [J].
Bull, Rowena A. ;
Adikari, Thiruni N. ;
Ferguson, James M. ;
Hammond, Jillian M. ;
Stevanovski, Igor ;
Beukers, Alicia G. ;
Naing, Zin ;
Yeang, Malinna ;
Verich, Andrey ;
Gamaarachchi, Hasindu ;
Kim, Ki Wook ;
Luciani, Fabio ;
Stelzer-Braid, Sacha ;
Eden, John-Sebastian ;
Rawlinson, William D. ;
van Hal, Sebastiaan J. ;
Deveson, Ira W. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[3]   VFDB 2016: hierarchical and refined dataset for big data analysis-10 years on [J].
Chen, Lihong ;
Zheng, Dandan ;
Liu, Bo ;
Yang, Jian ;
Jin, Qi .
NUCLEIC ACIDS RESEARCH, 2016, 44 (D1) :D694-D697
[4]   fastp: an ultra-fast all-in-one FASTQ preprocessor [J].
Chen, Shifu ;
Zhou, Yanqing ;
Chen, Yaru ;
Gu, Jia .
BIOINFORMATICS, 2018, 34 (17) :884-890
[5]   Complete Genome Sequence of Staphylococcus aureus Strain JKD6159, a Unique Australian Clone of ST93-IV Community Methicillin-Resistant Staphylococcus aureus [J].
Chua, Kyra ;
Seemann, Torsten ;
Harrison, Paul F. ;
Davies, John K. ;
Coutts, Scott J. ;
Chen, Honglei ;
Haring, Volker ;
Moore, Robert ;
Howden, Benjamin P. ;
Stinear, Timothy P. .
JOURNAL OF BACTERIOLOGY, 2010, 192 (20) :5556-5557
[6]   Genomic epidemiology reveals multiple introductions of SARS-CoV-2 from mainland Europe into Scotland [J].
da Silva Filipe, Ana ;
Shepherd, James G. ;
Williams, Thomas ;
Hughes, Joseph ;
Aranday-Cortes, Elihu ;
Asamaphan, Patawee ;
Ashraf, Shirin ;
Balcazar, Carlos ;
Brunker, Kirstyn ;
Campbell, Alasdair ;
Carmichael, Stephen ;
Davis, Chris ;
Dewar, Rebecca ;
Gallagher, Michael D. ;
Gunson, Rory ;
Hill, Verity ;
Ho, Antonia ;
Jackson, Ben ;
James, Edward ;
Jesudason, Natasha ;
Johnson, Natasha ;
McWilliam Leitch, E. Carol ;
Li, Kathy ;
MacLean, Alasdair ;
Mair, Daniel ;
McAllister, David A. ;
McCrone, John T. ;
McDonald, Sarah E. ;
McHugh, Martin P. ;
Morris, A. Keith ;
Nichols, Jenna ;
Niebel, Marc ;
Nomikou, Kyriaki ;
Orton, Richard J. ;
O'Toole, Aine ;
Palmarini, Massimo ;
Parcell, Benjamin J. ;
Parr, Yasmin A. ;
Rambaut, Andrew ;
Rooke, Stefan ;
Shaaban, Sharif ;
Shah, Rajiv ;
Singer, Joshua B. ;
Smollett, Katherine ;
Starinskij, Igor ;
Tong, Lily ;
Sreenu, Vattipally B. ;
Wastnedge, Elizabeth ;
Holden, Matthew T. G. ;
Robertson, David L. .
NATURE MICROBIOLOGY, 2021, 6 (01) :112-+
[7]   Nextflow enables reproducible computational workflows [J].
Di Tommaso, Paolo ;
Chatzou, Maria ;
Floden, Evan W. ;
Prieto Barja, Pablo ;
Palumbo, Emilio ;
Notredame, Cedric .
NATURE BIOTECHNOLOGY, 2017, 35 (04) :316-319
[8]   Establishment and lineage dynamics of the SARS-CoV-2 epidemic in the UK [J].
du Plessis, Louis ;
McCrone, John T. ;
Zarebski, Alexander E. ;
Hill, Verity ;
Ruis, Christopher ;
Gutierrez, Bernardo ;
Raghwani, Jayna ;
Ashworth, Jordan ;
Colquhoun, Rachel ;
Connor, Thomas R. ;
Faria, Nuno R. ;
Jackson, Ben ;
Loman, Nicholas J. ;
O'Toole, Aine ;
Nicholls, Samuel M. ;
Parag, Kris, V ;
Scher, Emily ;
Vasylyeva, Tetyana, I ;
Volz, Erik M. ;
Watts, Alexander ;
Bogoch, Isaac I. ;
Khan, Kamran ;
Aanensen, David M. ;
Kraemer, Moritz U. G. ;
Rambaut, Andrew ;
Pybus, Oliver G. .
SCIENCE, 2021, 371 (6530) :708-+
[9]   Temporal signal and the phylodynamic threshold of SARS-CoV-2 [J].
Duchene, Sebastian ;
Featherstone, Leo ;
Haritopoulou-Sinanidou, Melina ;
Rambaut, Andrew ;
Lemey, Philippe ;
Baele, Guy .
VIRUS EVOLUTION, 2020, 6 (02)
[10]   Bayesian Evaluation of Temporal Signal in Measurably Evolving Populations [J].
Duchene, Sebastian ;
Lemey, Philippe ;
Stadler, Tanja ;
Ho, Simon Y. W. ;
Duchene, David A. ;
Dhanasekaran, Vijaykrishna ;
Baele, Guy .
MOLECULAR BIOLOGY AND EVOLUTION, 2020, 37 (11) :3363-3379