A novel filter scheme of data processing for SQUID-based magnetocardiogram

被引:1
|
作者
Liu Dang-Ting [1 ]
Tian Ye [1 ]
Ren Yu-Feng [1 ]
Yu Hong-Wei [1 ]
机构
[1] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100080, Peoples R China
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a new filter scheme for magnetocardiogram (MCG) signal processing based on the quasi-periodic characteristic of the signals. The key points of this scheme are to determine the exact numbers of data points in each cardiac cycle by using electrocardiogram (ECG) data acquired simultaneously with the MCG signal and to normalize the MCG data sequence in each cycle into an identical length. Compared with conventional filters, the scheme has the advantage of more powerful noise suppression with less signal distortion. The desire for having high quality output signals from raw MCG data acquired in a simple shielded room or even in unshielded environment may be realized with the scheme.
引用
收藏
页码:2714 / 2717
页数:4
相关论文
共 50 条
  • [31] SQUID-Based Bioassay with Magnetic Particles in Flow
    Espy, M. A.
    Carr, C.
    Sandin, J. H.
    Hanson, C. J.
    Daniels, S. G.
    Matlachov, A. N.
    Graves, S. W.
    Ward, M. D.
    Kraus, R. H., Jr.
    Fritz, S.
    Leslie-Pelecky, D.
    7TH EUROPEAN CONFERENCE ON APPLIED SUPERCONDUCTIVITY (EUCAS'05), 2006, 43 : 1254 - 1257
  • [32] Removal of step-edges and corresponding Gibbs ringing in SQUID-based geomagnetic data
    Schoenau, T.
    Schneider, M.
    Schiffler, M.
    Schmelz, M.
    Stolz, R.
    Meyer, H-G
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2013, 24 (12)
  • [33] SQUID-based superconducting microcalorimeter with in situ tunable gain
    Schuster, C.
    Kempf, S.
    APPLIED PHYSICS LETTERS, 2023, 123 (25)
  • [34] A SQUID-BASED HIGH-PRESSURE MAGNETIC SUSCEPTOMETER
    ROWLEY, AT
    MYERS, A
    JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1987, 20 (02): : 146 - 151
  • [35] Design and performance of the ADMX SQUID-based microwave receiver
    Asztalos, S. J.
    Carosi, G.
    Hagmann, C.
    Kinion, D.
    van Bibber, K.
    Hotz, M.
    Rosenberg, L. J.
    Rybka, G.
    Wagner, A.
    Hoskins, J.
    Martin, C.
    Sullivan, N. S.
    Tanner, D. B.
    Bradley, R.
    Clarke, John
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 656 (01) : 39 - 44
  • [36] Nanomagnetic particles for SQUID-based magnetically labeled immunoassay
    Horng, HE
    Yang, SY
    Huang, YW
    Jiang, WQ
    Hong, CY
    Yang, HC
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2005, 15 (02) : 668 - 671
  • [37] Liquid helium cryostat for SQUID-based MRI receivers
    Seton, HC
    Hutchison, JMS
    Bussell, DM
    CRYOGENICS, 2005, 45 (05) : 348 - 355
  • [38] DC SQUID-based position detector for gravitational experiments
    Vodel, W
    Nietzsche, S
    Koch, H
    von Zameck, GJ
    APPLIED SUPERCONDUCTIVITY, 1998, 6 (10-12) : 767 - 775
  • [39] SQUID-based instrumentation for ultralow-field MRI
    Zotev, Vadim S.
    Matlashov, Andrei N.
    Volegov, Petr L.
    Urbaitis, Algis V.
    Espy, Michelle A.
    Kraus, Robert H., Jr.
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2007, 20 (11) : S367 - S373
  • [40] High-TC SQUID-based impedance magnetocardiography
    Vajrala, V
    Nawarathna, D
    Claycomb, JR
    Miller, JH
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2005, 15 (02) : 680 - 683