Thermal plasma gasification of organic waste stream coupled with CO2-sorption enhanced reforming employing different sorbents for enhanced hydrogen production

被引:31
作者
Sikarwar, Vineet Singh [1 ,2 ,3 ]
Peela, Nageswara Rao [4 ]
Vuppaladadiyam, Arun Krishna [5 ,6 ,7 ]
Ferreira, Newton Libanio [8 ]
Maslani, Alan [1 ]
Tomar, Ritik [2 ,9 ]
Meers, Erik [3 ]
Jeremias, Michal [1 ]
Pohorely, Michael [2 ]
机构
[1] Czech Acad Sci, Inst Plasma Phys, Vvi, Za Slovankou 1782-3, Prague 18200 8, Czech Republic
[2] Univ Chem & Technol, Dept Power Engn, Tech 5, Prague 16628 6, Czech Republic
[3] Univ Ghent, Dept Green Chem & Technol, B-9000 Ghent, Belgium
[4] Indian Inst Technol Guwahati, Dept Chem Engn, North Guwahati 781039, Assam, India
[5] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hung Hom, 11 Yuk Choi Rd, Hong Kong, Peoples R China
[6] James Cook Univ, Coll Sci & Engn, Townsville, Qld 4811, Australia
[7] Indian Inst Technol Delhi, Dept Chem Engn, Catalyt React Engn Lab, New Delhi, India
[8] Univ Ctr FEI, BR-09850901 Sao Bernardo Do Campo, SP, Brazil
[9] ORLEN Unipetrol Ctr Res & Educ ORLEN UniCRE, Areal Chempk, Litvinov Zaluzi 43670, Czech Republic
关键词
STEAM GASIFICATION; BIOMASS GASIFICATION; FLUIDIZED-BED; CO2; CAPTURE; SORPTION; ABSORPTION; ADSORPTION; SYNGAS; MODEL;
D O I
10.1039/d1ra07719h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the past few years, rising concerns vis-a-vis global climate change and clean energy demand have brought worldwide attention to developing the 'biomass/organic waste-to-energy' concept as a zero-emission, environment-friendly and sustainable pathway to simultaneously quench the global energy thirst and process diverse biomass/organic waste streams. Bioenergy with carbon capture and storage (BECCS) can be an influential technological route to curb climate change to a significant extent by preventing CO2 discharge. One of the pathways to realize BECCS is via in situ CO2-sorption coupled with a thermal plasma gasification process. In this study, an equilibrium model is developed using RDF as a model compound for plasma assisted CO2-sorption enhanced gasification to evaluate the viability of the proposed process in producing H-2 rich syngas. Three different classes of sorbents are investigated namely, a high temperature sorbent (CaO), an intermediate temperature sorbent (Li4SiO4) and a low temperature sorbent (MgO). The distribution of gas species, H-2 yield, dry gas yield and LHV are deduced with the varying gasification temperature, reforming temperature, steam-to-feedstock ratio and sorbent-to-feedstock for all three sorbents. Moreover, optimal values of different process variables are predicted. Maximum H-2 is noted to be produced at 550 degrees C for CaO (79 vol%), 500 degrees C for MgO (29 vol%) and 700 degrees C (55 vol%) for Li4SiO4 whereas the optimal SOR/F ratios are found to be 1.5 for CaO, 1.0 for MgO and 2.5 for Li4SiO4. The results obtained in the study are promising to employ plasma assisted CO2-sorption enhanced gasification as an efficacious pathway to produce clean energy and thus achieve carbon neutrality.
引用
收藏
页码:6122 / 6132
页数:11
相关论文
共 28 条
[1]   Plasma gasification of refuse derived fuel in a single-stage system using different gasifying agents [J].
Agon, N. ;
Hrabovsky, M. ;
Chumak, O. ;
Hlina, M. ;
Kopecky, V. ;
Maslani, A. ;
Bosmans, A. ;
Helsen, L. ;
Skoblja, S. ;
Van Oost, G. ;
Vierendeels, J. .
WASTE MANAGEMENT, 2016, 47 :246-255
[2]  
Berndes G., 2016, From Science to Policy, V3, P3, DOI [10.36333/fs03, DOI 10.36333/FS03]
[3]   A new synthesis route to Li4SiO4 as CO2 catalytic/sorbent [J].
Bretado, ME ;
Velderrain, VG ;
Gutiérrez, DL ;
Collins-Martínez, V ;
Ortiz, AL .
CATALYSIS TODAY, 2005, 107-08 :863-867
[4]   Water Stability and Adsorption in Metal-Organic Frameworks [J].
Burtch, Nicholas C. ;
Jasuja, Himanshu ;
Walton, Krista S. .
CHEMICAL REVIEWS, 2014, 114 (20) :10575-10612
[5]   Study of MgO-based dry regenerable sorbent for sorption enhanced water gas shift reaction [J].
Choi, Dong-Hyeok ;
Lee, Joong Beom ;
Eom, Tae Hyoung ;
Baek, Jeom In ;
Jegarl, Seong ;
Ryu, Chong Kul .
RENEWABLE ENERGY, 2013, 54 :144-149
[6]  
Florin N, 2015, WOODHEAD PUBL SER EN, P139, DOI 10.1016/B978-0-85709-243-4.00007-0
[7]   Industrial carbon dioxide capture and utilization: state of the art and future challenges [J].
Gao, Wanlin ;
Liang, Shuyu ;
Wang, Rujie ;
Jiang, Qian ;
Zhang, Yu ;
Zheng, Qianwen ;
Xie, Bingqiao ;
Toe, Cui Ying ;
Zhu, Xuancan ;
Wang, Junya ;
Huang, Liang ;
Gao, Yanshan ;
Wang, Zheng ;
Jo, Changbum ;
Wang, Qiang ;
Wang, Lidong ;
Liu, Yuefeng ;
Louis, Benoit ;
Scott, Jason ;
Roger, Anne-Cecile ;
Amal, Rose ;
Heh, Hong ;
Park, Sang-Eon .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (23) :8584-8686
[8]   Production of high quality syngas from argon/water plasma gasification of biomass and waste [J].
Hlina, M. ;
Hrabovsky, M. ;
Kavka, T. ;
Konrad, M. .
WASTE MANAGEMENT, 2014, 34 (01) :63-66
[9]   CO2 capture and regeneration properties of MgO-based sorbents promoted with alkali metal nitrates at high pressure for the sorption enhanced water gas shift process [J].
Hwang, Byung Wook ;
Lim, Jeong Hwan ;
Chae, Ho Jin ;
Ryu, Ho-Jung ;
Lee, Doyeon ;
Lee, Joong Beom ;
Kim, Hana ;
Lee, Soo Chool ;
Kim, Jae Chang .
PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2018, 116 :219-227
[10]   CO2 gasification of biomass: The effect of lime concentration in a fluidised bed [J].
Jeremias, M. ;
Pohorely, M. ;
Svoboda, K. ;
Skoblia, S. ;
Beno, Z. ;
Syc, M. .
APPLIED ENERGY, 2018, 217 :361-368